
beginner‐SQL‐tutorial.docx

 1

http://beginner-sql-tutorial.com/

SQL Tutorial
SQL (Structured Query Language) is used to modify and access data or
information from a storage area called database. This beginner sql tutorial
website teaches you the basics of SQL and how to write SQL queries. I will be
sharing my knowledge on SQL and help you learn SQL better. The sql concepts
discussed in this tutorial can be applied to most of database systems. The syntax
used to explain the concepts is similar to the one used in Oracle database.

SQL Introduction
SQL stands for “Structured Query Language” and can be pronounced as “SQL” or
“sequel – (Structured English Query Language)”. It is a query language used for
accessing and modifying information in the database. IBM first developed SQL in
1970s. Also it is an ANSI/ISO standard. It has become a Standard Universal
Language used by most of the relational database management systems
(RDBMS). Some of the RDBMS systems are: Oracle, Microsoft SQL server,
Sybase etc. Most of these have provided their own implementation thus
enhancing it's feature and making it a powerful tool. Few of the sql commands
used in sql programming are SELECT Statement, UPDATE Statement, INSERT
INTO Statement, DELETE Statement, WHERE Clause, ORDER BY Clause, GROUP
BY Clause, ORDER Clause, Joins, Views, GROUP Functions, Indexes etc.

In a simple manner, SQL is a non-procedural, English-like language that
processes data in groups of records rather than one record at a time. Few
functions of SQL are:
 store data
 modify data
 retrieve data
 modify data
 delete data
 create tables and other database objects
 delete data

beginner‐SQL‐tutorial.docx

 2

SQL Commands:
SQL commands are instructions used to communicate with the database to
perform specific task that work with data. SQL commands can be used not only
for searching the database but also to perform various other functions like, for
example, you can create tables, add data to tables, or modify data, drop the table,
set permissions for users. SQL commands are grouped into four major categories
depending on their functionality:

 Data Definition Language (DDL) - These SQL commands are used for
creating, modifying, and dropping the structure of database objects. The
commands are CREATE, ALTER, DROP, RENAME, and TRUNCATE.

 Data Manipulation Language (DML) - These SQL commands are used
for storing, retrieving, modifying, and deleting data. These commands are
SELECT, INSERT, UPDATE, and DELETE.

 Transaction Control Language (TCL) - These SQL commands are used
for managing changes affecting the data. These commands are COMMIT,
ROLLBACK, and SAVEPOINT.

 Data Control Language (DCL) - These SQL commands are used for
providing security to database objects. These commands are GRANT and
REVOKE.

beginner‐SQL‐tutorial.docx

 3

SQL SELECT Statement
The most commonly used SQL command is SELECT statement. The SQL SELECT
statement is used to query or retrieve data from a table in the database. A query
may retrieve information from specified columns or from all of the columns in the
table. To create a simple SQL SELECT Statement, you must specify the column(s)
name and the table name. The whole query is called SQL SELECT Statement.

Syntax of SQL SELECT Statement:

SELECT column_list FROM table-name

[WHERE Clause]

[GROUP BY clause]

[HAVING clause]

[ORDER BY clause];

 table-name is the name of the table from which information is retrieved.
 column_list includes one or more columns from which data is retrieved.
 The code within the brackets is optional.

database table student_details;

id first_name last_name age subject games

100 Rahul Sharma 10 Science Cricket

101 Anjali Bhagwat 12 Maths Football

102 Stephen Fleming 09 Science Cricket

103 Shekar Gowda 18 Maths Badminton

104 Priya Chandra 15 Economics Chess

NOTE: These database tables are used here for better explanation of SQL
commands. In reality, the tables can have different columns and
different data.

For example, consider the table student_details. To select the first name of all the
students the query would be like:

SELECT first_name FROM student_details;

beginner‐SQL‐tutorial.docx

 4

NOTE: The commands are not case sensitive. The above SELECT
statement can also be written as "select first_name from
students_details;"

You can also retrieve data from more than one column. For example, to select
first name and last name of all the students.

SELECT first_name, last_name FROM student_details;

You can also use clauses like WHERE, GROUP BY, HAVING, ORDER BY with
SELECT statement. We will discuss these commands in coming chapters.

NOTE: In a SQL SELECT statement only SELECT and FROM statements are
mandatory. Other clauses like WHERE, ORDER BY, GROUP BY, HAVING
are optional.

How to use expressions in SQL SELECT Statement?
Expressions combine many arithmetic operators, they can be used in SELECT,
WHERE and ORDER BY Clauses of the SQL SELECT Statement.
Here we will explain how to use expressions in the SQL SELECT Statement. About
using expressions in WHERE and ORDER BY clause, they will be explained in their
respective sections.

The operators are evaluated in a specific order of precedence, when more than
one arithmetic operator is used in an expression. The order of evaluation is:
parentheses, division, multiplication, addition, and subtraction. The evaluation is
performed from the left to the right of the expression.
For example: If we want to display the first and last name of an employee
combined together, the SQL Select Statement would be like

SELECT first_name || ' ' || last_name FROM employee;

Output:
first_name || ' ' || last_name

Rahul Sharma
Anjali Bhagwat
Stephen Fleming
Shekar Gowda
Priya Chandra

You can also provide aliases as below.

beginner‐SQL‐tutorial.docx

 5

SELECT first_name || ' ' || last_name AS emp_name FROM employee;

Output:
emp_name

Rahul Sharma
Anjali Bhagwat
Stephen Fleming
Shekar Gowda
Priya Chandra

SQL Alias
SQL Aliases are defined for columns and tables. Basically aliases is created to
make the column selected more readable.

For Example: To select the first name of all the students, the query would be
like:
Aliases for columns:

SELECT first_name AS Name FROM student_details;

SELECT first_name Name FROM student_details;

In the above query, the column first_name is given a alias as 'name'. So when the
result is displayed the column name appears as 'Name' instead of 'first_name'.

Output:
Name

Rahul Sharma
Anjali Bhagwat
Stephen Fleming
Shekar Gowda
Priya Chandra

Aliases for tables:

SELECT s.first_name FROM student_details s;

In the above query, alias 's' is defined for the table student_details and the
column first_name is selected from the table.

beginner‐SQL‐tutorial.docx

 6

Aliases is more useful when
 There are more than one tables involved in a query,
 Functions are used in the query,
 The column names are big or not readable,
 More than one columns are combined together

SQL WHERE Clause
The WHERE Clause is used when you want to retrieve specific information from a
table excluding other irrelevant data. For example, when you want to see the
information about students in class 10th only then you do need the information
about the students in other class. Retrieving information about all the students
would increase the processing time for the query.
So SQL offers a feature called WHERE clause, which we can use to restrict the
data that is retrieved. The condition you provide in the WHERE clause filters the
rows retrieved from the table and gives you only those rows which you expected
to see. WHERE clause can be used along with SELECT, DELETE, UPDATE
statements.

Syntax of SQL WHERE Clause:

WHERE {column or expression} comparison-operator value

Syntax for a WHERE clause with Select statement is:

SELECT column_list FROM table-name

WHERE condition;

 column or expression - Is the column of a table or a expression
 comparison-operator - operators like = <> etc.
 value - Any user value or a column name for comparison

For Example: To find the name of a student with id 100, the query would be like:

SELECT first_name, last_name FROM student_details

WHERE id = 100;

Comparison Operators and Logical Operators are used in WHERE Clause. These
operators are discussed in the next chapter.

beginner‐SQL‐tutorial.docx

 7

NOTE: Aliases defined for the columns in the SELECT statement cannot
be used in the WHERE clause to set conditions. Only aliases created for
tables can be used to reference the columns in the table.
How to use expressions in the WHERE Clause?

Expressions can also be used in the WHERE clause of the SELECT statement.
For example: Lets consider the employee table. If you want to display employee
name, current salary, and a 20% increase in the salary for only those products
where the percentage increase in salary is greater than 30000, the SELECT
statement can be written as shown below

SELECT name, salary, salary*1.2 AS new_salary FROM employee

WHERE salary*1.2 > 30000;

Output:

name salary new_salary

Hrithik 35000 37000

Harsha 35000 37000

Priya 30000 360000

NOTE: Aliases defined in the SELECT Statement can be used in WHERE
Clause.

SQL Operators
There are two type of Operators, namely Comparison Operators and Logical
Operators. These operators are used mainly in the WHERE clause, HAVING clause
to filter the data to be selected.

Comparison Operators:
Comparison operators are used to compare the column data with specific values
in a condition.
Comparison Operators are also used along with the SELECT statement to filter
data based on specific conditions.
The below table describes each comparison operator.

Comparison Operators Description

= equal to

<>, != is not equal to

< less than

> greater than

beginner‐SQL‐tutorial.docx

 8

>= greater than or equal to

<= less than or equal to

Logical Operators:
There are three Logical Operators namely AND, OR and NOT.
Logical operators are discussed in detail in the next section.

SQL Logical Operators
There are three Logical Operators namely, AND, OR, and NOT. These operators
compare two conditions at a time to determine whether a row can be selected for
the output. When retrieving data using a SELECT statement, you can use logical
operators in the WHERE clause, which allows you to combine more than one
condition.

Logical

Operators
Description

OR For the row to be selected at least one of the conditions must be true.

AND For a row to be selected all the specified conditions must be true.

NOT For a row to be selected the specified condition must be false.

"OR" Logical Operator:
If you want to select rows that satisfy at least one of the given conditions, you can
use the logical operator, OR.

For example: if you want to find the names of students who are studying either
Maths or Science, the query would be like,

SELECT first_name, last_name, subject

FROM student_details

WHERE subject = 'Maths' OR subject = 'Science'

The output would be something like,

first_name last_name subject

Anajali Bhagwat Maths

Shekar Gowda Maths

Rahul Sharma Science

Stephen Fleming Science

beginner‐SQL‐tutorial.docx

 9

The following table describes how logical "OR" operator selects a row.

Column1 Satisfied? Column2 Satisfied? Row Selected

YES YES YES

YES NO YES

NO YES YES

NO NO NO

"AND" Logical Operator:
If you want to select rows that must satisfy all the given conditions, you can use
the logical operator, AND.
For Example: To find the names of the students between the age 10 to 15 years,
the query would be like:

SELECT first_name, last_name, age

FROM student_details

WHERE age >= 10 AND age <= 15;

The output would be something like,

first_name last_name age

Rahul Sharma 10

Anajali Bhagwat 12

Shekar Gowda 15

The following table describes how logical "AND" operator selects a row.

Column1 Satisfied? Column2 Satisfied? Row Selected

YES YES YES

YES NO NO

NO YES NO

NO NO NO

"NOT" Logical Operator:
If you want to find rows that do not satisfy a condition, you can use the logical
operator, NOT. NOT results in the reverse of a condition. That is, if a condition is
satisfied, then the row is not returned.

beginner‐SQL‐tutorial.docx

 10

For example: If you want to find out the names of the students who do not play
football, the query would be like:

SELECT first_name, last_name, games

FROM student_details

WHERE NOT games = 'Football'

The output would be something like,

first_name last_name games

Rahul Sharma Cricket

Stephen Fleming Cricket

Shekar Gowda Badminton

Priya Chandra Chess

The following table describes how logical "NOT" operator selects a row.

Column1 Satisfied? NOT Column1 Satisfied? Row Selected

YES NO NO

NO YES YES

Nested Logical Operators:
You can use multiple logical operators in an SQL statement. When you combine
the logical operators in a SELECT statement, the order in which the statement is
processed is
1) NOT
2) AND
3) OR

For example: If you want to select the names of the students who age is
between 10 and 15 years, or those who do not play football, the SELECT
statement would be

SELECT first_name, last_name, age, games

FROM student_details

WHERE age >= 10 AND age <= 15

OR NOT games = 'Football'

beginner‐SQL‐tutorial.docx

 11

The output would be something like,

first_name last_name age games

Rahul Sharma 10 Cricket

Priya Chandra 15 Chess

In this case, the filter works as follows:
Condition 1: All the students you do not play football are selected.
Condition 2: All the students whose are aged between 10 and 15 are selected.
Condition 3: Finally the result is, the rows which satisfy at least one of the above
conditions is returned.

NOTE: The order in which you phrase the condition is important, if the
order changes you are likely to get a different result.

SQL Comparison Keywords
There are other comparison keywords available in sql which are used to enhance
the search capabilities of a sql query. They are "IN", "BETWEEN...AND", "IS
NULL", "LIKE".

Comparison Operators Description

LIKE column value is similar to specified character(s).

IN column value is equal to any one of a specified set of values.

BETWEEN...AND
column value is between two values, including the end values

specified in the range.

IS NULL column value does not exist.

SQL LIKE Operator
The LIKE operator is used to list all rows in a table whose column values match a
specified pattern. It is useful when you want to search rows to match a specific
pattern, or when you do not know the entire value. For this purpose we use a
wildcard character '%'.
For example: To select all the students whose name begins with 'S'

SELECT first_name, last_name

FROM student_details

WHERE first_name LIKE 'S%';

The output would be similar to:

beginner‐SQL‐tutorial.docx

 12

first_name last_name

Stephen Fleming

Shekar Gowda

The above select statement searches for all the rows where the first letter of the
column first_name is 'S' and rest of the letters in the name can be any character.
There is another wildcard character you can use with LIKE operator. It is the
underscore character, ' _ ' . In a search string, the underscore signifies a single
character.

For example: to display all the names with 'a' second character,

SELECT first_name, last_name

FROM student_details

WHERE first_name LIKE '_a%';

The output would be similar to:

first_name last_name

Rahul Sharma

NOTE:Each underscore act as a placeholder for only one character. So
you can use more than one underscore. Eg: ' __i% '-this has two
underscores towards the left, 'S__j%' - this has two underscores
between character 'S' and 'i'.

SQL BETWEEN ... AND Operator
The operator BETWEEN and AND, are used to compare data for a range of values.
For Example: to find the names of the students between age 10 to 15 years, the
query would be like,

SELECT first_name, last_name, age

FROM student_details

WHERE age BETWEEN 10 AND 15;

The output would be similar to:

first_name last_name age

Rahul Sharma 10

beginner‐SQL‐tutorial.docx

 13

Anajali Bhagwat 12

Shekar Gowda 15

SQL IN Operator:
The IN operator is used when you want to compare a column with more than one
value. It is similar to an OR condition.

For example: If you want to find the names of students who are studying either
Maths or Science, the query would be like,

SELECT first_name, last_name, subject

FROM student_details

WHERE subject IN ('Maths', 'Science');

The output would be similar to:

first_name last_name subject

Anajali Bhagwat Maths

Shekar Gowda Maths

Rahul Sharma Science

Stephen Fleming Science

You can include more subjects in the list like ('maths','science','history')
NOTE: The data used to compare is case sensitive.

SQL IS NULL Operator
A column value is NULL if it does not exist. The IS NULL operator is used to
display all the rows for columns that do not have a value.

For Example: If you want to find the names of students who do not participate
in any games, the query would be as given below

SELECT first_name, last_name

FROM student_details

WHERE games IS NULL

beginner‐SQL‐tutorial.docx

 14

There would be no output as we have every student participate in a game in the
table student_details, else the names of the students who do not participate in
any games would be displayed.

SQL ORDER BY
The ORDER BY clause is used in a SELECT statement to sort results either in
ascending or descending order. Oracle sorts query results in ascending order by
default.

Syntax for using SQL ORDER BY clause to sort data is:

SELECT column-list

FROM table_name [WHERE condition]

[ORDER BY column1 [, column2, .. columnN] [DESC]];

database table "employee";

id name dept age salary location

100 Ramesh Electrical 24 25000 Bangalore

101 Hrithik Electronics 28 35000 Bangalore

102 Harsha Aeronautics 28 35000 Mysore

103 Soumya Electronics 22 20000 Bangalore

104 Priya InfoTech 25 30000 Mangalore

For Example: If you want to sort the employee table by salary of the employee,
the sql query would be.

SELECT name, salary FROM employee ORDER BY salary;

The output would be like

name salary

Soumya 20000

Ramesh 25000

Priya 30000

Hrithik 35000

Harsha 35000

The query first sorts the result according to name and then displays it.

beginner‐SQL‐tutorial.docx

 15

You can also use more than one column in the ORDER BY clause.
If you want to sort the employee table by the name and salary, the query would
be like,

SELECT name, salary FROM employee ORDER BY name, salary;

The output would be like:

name salary

Soumya 20000

Ramesh 25000

Priya 30000

Harsha 35000

Hrithik 35000

NOTE: The columns specified in ORDER BY clause should be one of the
columns selected in the SELECT column list.
You can represent the columns in the ORDER BY clause by specifying the position
of a column in the SELECT list, instead of writing the column name.
The above query can also be written as given below,

SELECT name, salary FROM employee ORDER BY 1, 2;

By default, the ORDER BY Clause sorts data in ascending order. If you want to
sort the data in descending order, you must explicitly specify it as shown below.

SELECT name, salary

FROM employee

ORDER BY name, salary DESC;

The above query sorts only the column 'salary' in descending order and the
column 'name' by ascending order.
If you want to select both name and salary in descending order, the query would
be as given below.

SELECT name, salary

FROM employee

ORDER BY name DESC, salary DESC;

beginner‐SQL‐tutorial.docx

 16

How to use expressions in the ORDER BY Clause?
Expressions in the ORDER BY clause of a SELECT statement.
For example: If you want to display employee name, current salary, and a 20%
increase in the salary for only those employees for whom the percentage increase
in salary is greater than 30000 and in descending order of the increased price,
the SELECT statement can be written as shown below

SELECT name, salary, salary*1.2 AS new_salary

FROM employee

WHERE salary*1.2 > 30000

ORDER BY new_salary DESC;

The output for the above query is as follows.

name salary new_salary

Hrithik 35000 37000

Harsha 35000 37000

Priya 30000 36000

NOTE:Aliases defined in the SELECT Statement can be used in ORDER BY
Clause.

SQL GROUP Functions
Group functions are built-in SQL functions that operate on groups of rows and
return one value for the entire group. These functions are: COUNT, MAX, MIN,
AVG, SUM, DISTINCT

SQL COUNT (): This function returns the number of rows in the table that
satisfies the condition specified in the WHERE condition. If the WHERE condition
is not specified, then the query returns the total number of rows in the table.
For Example: If you want the number of employees in a particular department,
the query would be:

SELECT COUNT (*) FROM employee

WHERE dept = 'Electronics';

The output would be '2' rows.

beginner‐SQL‐tutorial.docx

 17

If you want the total number of employees in all the department, the query would
take the form:

SELECT COUNT (*) FROM employee;

The output would be '5' rows.

SQL DISTINCT(): This function is used to select the distinct rows.
For Example: If you want to select all distinct department names from employee
table, the query would be:

SELECT DISTINCT dept FROM employee;

To get the count of employees with unique name, the query would be:

SELECT COUNT (DISTINCT name) FROM employee;

SQL MAX(): This function is used to get the maximum value from a column.
To get the maximum salary drawn by an employee, the query would be:

SELECT MAX (salary) FROM employee;

SQL MIN(): This function is used to get the minimum value from a column.
To get the minimum salary drawn by an employee, he query would be:

SELECT MIN (salary) FROM employee;

SQL AVG(): This function is used to get the average value of a numeric column.
To get the average salary, the query would be

SELECT AVG (salary) FROM employee;

SQL SUM(): This function is used to get the sum of a numeric column
To get the total salary given out to the employees,

SELECT SUM (salary) FROM employee;

SQL GROUP BY Clause
The SQL GROUP BY Clause is used along with the group functions to retrieve data
grouped according to one or more columns.

beginner‐SQL‐tutorial.docx

 18

For Example: If you want to know the total amount of salary spent on each
department, the query would be:

SELECT dept, SUM (salary)

FROM employee

GROUP BY dept;

The output would be like:

dept salary

Electrical 25000

Electronics 55000

Aeronautics 35000

InfoTech 30000

NOTE: The group by clause should contain all the columns in the select
list expect those used along with the group functions.

SELECT location, dept, SUM (salary)

FROM employee

GROUP BY location, dept;

The output would be like:

location dept salary

Bangalore Electrical 25000

Bangalore Electronics 55000

Mysore Aeronautics 35000

Mangalore InfoTech 30000

SQL HAVING Clause
Having clause is used to filter data based on the group functions. This is similar to
WHERE condition but is used with group functions. Group functions cannot be
used in WHERE Clause but can be used in HAVING clause.

For Example: If you want to select the department that has total salary paid for
its employees more than 25000, the sql query would be like;

beginner‐SQL‐tutorial.docx

 19

SELECT dept, SUM (salary)

FROM employee

GROUP BY dept

HAVING SUM (salary) > 25000

The output would be like:

dept salary

Electronics 55000

Aeronautics 35000

InfoTech 30000

When WHERE, GROUP BY and HAVING clauses are used together in a SELECT
statement, the WHERE clause is processed first, then the rows that are returned
after the WHERE clause is executed are grouped based on the GROUP BY clause.
Finally, any conditions on the group functions in the HAVING clause are applied to
the grouped rows before the final output is displayed.

SQL INSERT Statement
The INSERT Statement is used to add new rows of data to a table.
We can insert data to a table in two ways,

1) Inserting the data directly to a table.
Syntax for SQL INSERT is:

INSERT INTO TABLE_NAME [(col1, col2, col3,...colN)]

VALUES (value1, value2, value3,...valueN);

 col1, col2,...colN -- the names of the columns in the table into which you
want to insert data.
While inserting a row, if you are adding value for all the columns of the table you
need not specify the column(s) name in the sql query. But you need to make sure
the order of the values is in the same order as the columns in the table. The sql
insert query will be as follows

INSERT INTO TABLE_NAME

VALUES (value1, value2, value3,... valueN);

beginner‐SQL‐tutorial.docx

 20

For Example: If you want to insert a row to the employee table, the query would
be like,

INSERT INTO employee (id, name, dept, age, salary location)

VALUES (105, 'Srinath', 'Aeronautics', 27, 33000);

NOTE:When adding a row, only the characters or date values should be
enclosed with single quotes.
If you are inserting data to all the columns, the column names can be omitted.
The above insert statement can also be written as,

INSERT INTO employee

VALUES (105, 'Srinath', 'Aeronautics', 27, 33000);

Inserting data to a table through a select statement.
Syntax for SQL INSERT is:

INSERT INTO table_name [(column1, column2, ... columnN)]

SELECT column1, column2, ...columnN

FROM table_name [WHERE condition];

For Example: To insert a row into the employee table from a temporary table,
the sql insert query would be like,

INSERT INTO employee (id, name, dept, age, salary location)

SELECT emp_id, emp_name, dept, age, salary, location

FROM temp_employee;

If you are inserting data to all the columns, the above insert statement can also
be written as,

INSERT INTO employee

SELECT * FROM temp_employee;

beginner‐SQL‐tutorial.docx

 21

NOTE:We have assumed the temp_employee table has columns emp_id,
emp_name, dept, age, salary, location in the above given order and the
same datatype.

IMPORTANT NOTE:
1) When adding a new row, you should ensure the data type of the value and the
column matches
2) You follow the integrity constraints, if any, defined for the table.

SQL UPDATE Statement
The UPDATE Statement is used to modify the existing rows in a table.
The Syntax for SQL UPDATE Command is:

UPDATE table_name

SET column_name1 = value1, column_name2 = value2, ...

[WHERE condition]

 table_name - the table name which has to be updated.
 column_name1, column_name2.. - the columns that gets changed.
 value1, value2... - are the new values.

NOTE:In the Update statement, WHERE clause identifies the rows that
get affected. If you do not include the WHERE clause, column values for
all the rows get affected.

For Example: To update the location of an employee, the sql update query
would be like,

UPDATE employee

SET location ='Mysore'

WHERE id = 101;

To change the salaries of all the employees, the query would be,

UPDATE employee

SET salary = salary + (salary * 0.2);

beginner‐SQL‐tutorial.docx

 22

SQL Delete Statement
The DELETE Statement is used to delete rows from a table.
The Syntax of a SQL DELETE statement is:

DELETE FROM table_name [WHERE condition];

 table_name -- the table name which has to be updated.

NOTE: The WHERE clause in the sql delete command is optional and it
identifies the rows in the column that gets deleted. If you do not include
the WHERE clause all the rows in the table is deleted, so be careful while
writing a DELETE query without WHERE clause.

For Example: To delete an employee with id 100 from the employee table, the
sql delete query would be like,

DELETE FROM employee WHERE id = 100;

To delete all the rows from the employee table, the query would be like,

DELETE FROM employee;

SQL TRUNCATE Statement
The SQL TRUNCATE command is used to delete all the rows from the table and
free the space containing the table.
Syntax to TRUNCATE a table:

TRUNCATE TABLE table_name;

For Example: To delete all the rows from employee table, the query would be
like,

TRUNCATE TABLE employee;

Difference between DELETE and TRUNCATE Statements:
DELETE Statement: This command deletes only the rows from the table based
on the condition given in the where clause or deletes all the rows from the table
if no condition is specified. But it does not free the space containing the table.

TRUNCATE statement: This command is used to delete all the rows from the
table and free the space containing the table.

beginner‐SQL‐tutorial.docx

 23

SQL DROP Statement:
The SQL DROP command is used to remove an object from the database. If you
drop a table, all the rows in the table is deleted and the table structure is removed
from the database. Once a table is dropped we cannot get it back, so be careful
while using RENAME command. When a table is dropped all the references to the
table will not be valid.

Syntax to drop a sql table structure:

DROP TABLE table_name;

For Example: To drop the table employee, the query would be like

DROP TABLE employee;

Difference between DROP and TRUNCATE Statement:
If a table is dropped, all the relationships with other tables will no longer be valid,
the integrity constraints will be dropped, grant or access privileges on the table
will also be dropped, if want use the table again it has to be recreated with the
integrity constraints, access privileges and the relationships with other tables
should be established again. But, if a table is truncated, the table structure
remains the same, therefore any of the above problems will not exist.

SQL CREATE TABLE Statement
The CREATE TABLE Statement is used to create tables to store data. Integrity
Constraints like primary key, unique key, foreign key can be defined for the
columns while creating the table. The integrity constraints can be defined at
column level or table level. The implementation and the syntax of the CREATE
Statements differs for different RDBMS.

The Syntax for the CREATE TABLE Statement is:

CREATE TABLE table_name (

 column_name1 datatype,

 column_name2 datatype,

 … column_nameN datatype);

 table_name - is the name of the table.

beginner‐SQL‐tutorial.docx

 24

 column_name1, column_name2.... - is the name of the columns
 datatype - is the datatype for the column like char, date, number etc.

For Example: If you want to create the employee table, the statement would be
like,

CREATE TABLE employee (

 id number(5),

 name char(20),

 dept char(10),

 age number(2),

 salary number(10),

 location char(10));

In Oracle database, the datatype for an integer column is represented as
"number". In Sybase it is represented as "int".
Oracle provides another way of creating a table.

CREATE TABLE temp_employee

SELECT * FROM employee

In the above statement, temp_employee table is created with the same number
of columns and datatype as employee table.

SQL ALTER TABLE Statement
The SQL ALTER TABLE command is used to modify the definition (structure) of a
table by modifying the definition of its columns. The ALTER command is used to
perform the following functions.
1) Add, drop, modify table columns
2) Add and drop constraints
3) Enable and Disable constraints

Syntax to add a column

ALTER TABLE table_name ADD column_name datatype;

beginner‐SQL‐tutorial.docx

 25

For Example: To add a column "experience" to the employee table, the query
would be like

ALTER TABLE employee ADD experience number(3);

Syntax to drop a column

ALTER TABLE table_name DROP column_name;

For Example: To drop the column "location" from the employee table, the query
would be like

ALTER TABLE employee DROP location;

Syntax to modify a column

ALTER TABLE table_name MODIFY column_name datatype;

For Example: To modify the column salary in the employee table, the query
would be like

ALTER TABLE employee MODIFY salary number(15,2);

SQL RENAME Command
The SQL RENAME command is used to change the name of the table or a
database object.
If you change the object's name any reference to the old name will be affected.
You have to manually change the old name to the new name in every reference.

Syntax to rename a table

RENAME old_table_name To new_table_name;

For Example: To change the name of the table employee to my_employee, the
query would be like

RENAME employee TO my_emloyee;

SQL Integrity Constraints
Integrity Constraints are used to apply business rules for the database tables.
The constraints available in SQL are Foreign Key, Not Null, Unique, Check.
Constraints can be defined in two ways

beginner‐SQL‐tutorial.docx

 26

1) The constraints can be specified immediately after the column definition.
This is called column-level definition.
2) The constraints can be specified after all the columns are defined. This is
called table-level definition.

1) SQL Primary key:
This constraint defines a column or combination of columns which uniquely
identifies each row in the table.

Syntax to define a Primary key at column level:

column name datatype [CONSTRAINT constraint_name] PRIMARY KEY

Syntax to define a Primary key at table level:

[CONSTRAINT constraint_name] PRIMARY KEY

(column_name1,column_name2,..)

 column_name1, column_name2 are the names of the columns which
define the primary Key.

 The syntax within the bracket i.e. [CONSTRAINT constraint_name] is
optional.

For Example: To create an employee table with Primary Key constraint, the
query would be like.
Primary Key at column level:

CREATE TABLE employee (

id number(5) PRIMARY KEY,

name char(20),

dept char(10),

age number(2),

salary number(10),

location char(10));

beginner‐SQL‐tutorial.docx

 27

or

CREATE TABLE employee (

id number(5) CONSTRAINT emp_id_pk PRIMARY KEY,

name char(20),

dept char(10),

age number(2),

salary number(10),

location char(10));

Primary Key at table level:

CREATE TABLE employee (

id number(5),

name char(20),

dept char(10),

age number(2),

salary number(10),

location char(10),

CONSTRAINT emp_id_pk PRIMARY KEY (id));

2) SQL Foreign key or Referential Integrity :
This constraint identifies any column referencing the PRIMARY KEY in another
table. It establishes a relationship between two columns in the same table or
between different tables. For a column to be defined as a Foreign Key, it should
be a defined as a Primary Key in the table which it is referring. One or more
columns can be defined as Foreign key.

beginner‐SQL‐tutorial.docx

 28

Syntax to define a Foreign key at column level:

[CONSTRAINT constraint_name] REFERENCES

Referenced_Table_name(column_name)

Syntax to define a Foreign key at table level:

[CONSTRAINT constraint_name] FOREIGN KEY(column_name)

REFERENCES referenced_table_name(column_name);

For Example:
1) Lets use the "product" table and "order_items".

Foreign Key at column level:

CREATE TABLE product

(product_id number(5) CONSTRAINT pd_id_pk PRIMARY KEY,

product_name char(20),

supplier_name char(20),

unit_price number(10)

);

CREATE TABLE order_items

(order_id number(5) CONSTRAINT od_id_pk PRIMARY KEY,

product_id number(5) CONSTRAINT pd_id_fk REFERENCES,

product(product_id),

product_name char(20),

supplier_name char(20),

beginner‐SQL‐tutorial.docx

 29

unit_price number(10)

);

Foreign Key at table level:

CREATE TABLE order_items

(order_id number(5) ,

product_id number(5),

product_name char(20),

supplier_name char(20),

unit_price number(10)

CONSTRAINT od_id_pk PRIMARY KEY(order_id),

CONSTRAINT pd_id_fk FOREIGN KEY(product_id) REFERENCES

product(product_id));

2) If the employee table has a 'mgr_id' i.e, manager id as a foreign key which
references primary key 'id' within the same table, the query would be like,

CREATE TABLE employee

(id number(5) PRIMARY KEY,

name char(20),

dept char(10),

age number(2),

mgr_id number(5) REFERENCES employee(id),

salary number(10),

beginner‐SQL‐tutorial.docx

 30

location char(10));

3) SQL Not Null Constraint :
This constraint ensures all rows in the table contain a definite value for the
column which is specified as not null. Which means a null value is not allowed.

Syntax to define a Not Null constraint:

[CONSTRAINT constraint name] NOT NULL

For Example: To create a employee table with Null value, the query would be
like

CREATE TABLE employee (

id number(5),

name char(20) CONSTRAINT nm_nn NOT NULL,

dept char(10),

age number(2),

salary number(10),

location char(10)

);

4) SQL Unique Key:
This constraint ensures that a column or a group of columns in each row have a
distinct value. A column(s) can have a null value but the values cannot be
duplicated.

Syntax to define a Unique key at column level:

[CONSTRAINT constraint_name] UNIQUE

Syntax to define a Unique key at table level:

[CONSTRAINT constraint_name] UNIQUE(column_name)

beginner‐SQL‐tutorial.docx

 31

For Example: To create an employee table with Unique key, the query would be
like,
Unique Key at column level:

CREATE TABLE employee

(id number(5) PRIMARY KEY,

name char(20),

dept char(10),

age number(2),

salary number(10),

location char(10) UNIQUE);

or

CREATE TABLE employee

(id number(5) PRIMARY KEY,

name char(20),

dept char(10),

age number(2),

salary number(10),

location char(10) CONSTRAINT loc_un UNIQUE);

Unique Key at table level:

CREATE TABLE employee

(id number(5) PRIMARY KEY,

beginner‐SQL‐tutorial.docx

 32

name char(20),

dept char(10),

age number(2),

salary number(10),

location char(10),

CONSTRAINT loc_un UNIQUE(location));

5) SQL Check Constraint :
This constraint defines a business rule on a column. All the rows must satisfy this
rule. The constraint can be applied for a single column or a group of columns.
Syntax to define a Check constraint:

[CONSTRAINT constraint_name] CHECK (condition)

For Example: In the employee table to select the gender of a person, the query
would be like
Check Constraint at column level:

CREATE TABLE employee

(id number(5) PRIMARY KEY,

name char(20),

dept char(10),

age number(2),

gender char(1) CHECK (gender in ('M','F')),

salary number(10),

location char(10));

beginner‐SQL‐tutorial.docx

 33

Check Constraint at table level:

CREATE TABLE employee

(id number(5) PRIMARY KEY,

name char(20),

dept char(10),

age number(2),

gender char(1),

salary number(10),

location char(10),

CONSTRAINT gender_ck CHECK (gender in ('M','F')));

SQL Joins
SQL Joins are used to relate information in different tables. A Join condition is a
part of the sql query that retrieves rows from two or more tables. A SQL Join
condition is used in the SQL WHERE Clause of select, update, delete statements.

The Syntax for joining two tables is:

SELECT col1, col2, col3...

FROM table_name1, table_name2

WHERE table_name1.col2 = table_name2.col1;

If a sql join condition is omitted or if it is invalid the join operation will result in a
Cartesian product. The Cartesian product returns a number of rows equal to the
product of all rows in all the tables being joined. For example, if the first table has
20 rows and the second table has 10 rows, the result will be 20 * 10, or 200 rows.
This query takes a long time to execute.
Lets use the below two tables to explain the sql join conditions.

beginner‐SQL‐tutorial.docx

 34

database table "product";

product_id product_name supplier_name unit_price

100 Camera Nikon 300

101 Television Onida 100

102 Refrigerator Vediocon 150

103 Ipod Apple 75

104 Mobile Nokia 50

database table "order_items";

order_id product_id total_units customer

5100 104 30 Infosys

5101 102 5 Satyam

5102 103 25 Wipro

5103 101 10 TCS

SQL Joins can be classified into Equi join and Non Equi join.
1) SQL Equi joins

It is a simple sql join condition which uses the equal sign as the comparison
operator. Two types of equi joins are SQL Outer join and SQL Inner join.
For example: You can get the information about a customer who purchased
a product and the quantity of product.

2) SQL Non equi joins
It is a sql join condition which makes use of some comparison operator other
than the equal sign like >, <, >=, <=

1) SQL Equi Joins:
An equi-join is further classified into two categories:
a) SQL Inner Join
b) SQL Outer Join

a) SQL Inner Join:
All the rows returned by the sql query satisfy the sql join condition specified.
For example: If you want to display the product information for each order the
query will be as given below. Since you are retrieving the data from two tables,
you need to identify the common column between these two tables, which is the
product_id.
The query for this type of sql joins would be like,

beginner‐SQL‐tutorial.docx

 35

SELECT order_id, product_name, unit_price, supplier_name, total_units

FROM product, order_items

WHERE order_items.product_id = product.product_id;

The columns must be referenced by the table name in the join condition, because
product_id is a column in both the tables and needs a way to be identified. This
avoids ambiguity in using the columns in the SQL SELECT statement.
The number of join conditions is (n-1), if there are more than two tables joined in
a query where 'n' is the number of tables involved. The rule must be true to avoid
Cartesian product.

We can also use aliases to reference the column name, then the above query
would be like,

SELECT o.order_id, p.product_name, p.unit_price, p.supplier_name,

o.total_units

FROM product p, order_items o

WHERE o.product_id = p.product_id;

b) SQL Outer Join:
This sql join condition returns all rows from both tables which satisfy the join
condition along with rows which do not satisfy the join condition from one of the
tables. The sql outer join operator in Oracle is (+) and is used on one side of the
join condition only.

The syntax differs for different RDBMS implementation. Few of them represent
the join conditions as "sql left outer join", "sql right outer join".
If you want to display all the product data along with order items data, with null
values displayed for order items if a product has no order item, the sql query for
outer join would be as shown below:

SELECT p.product_id, p.product_name, o.order_id, o.total_units

FROM order_items o, product p

beginner‐SQL‐tutorial.docx

 36

WHERE o.product_id (+) = p.product_id;

The output would be like,

product_id product_name order_id total_units

100 Camera

101 Television 5103 10

102 Refrigerator 5101 5

103 Ipod 5102 25

104 Mobile 5100 30

NOTE:If the (+) operator is used in the left side of the join condition it is
equivalent to left outer join. If used on the right side of the join condition
it is equivalent to right outer join.

SQL Self Join:
A Self Join is a type of sql join which is used to join a table to itself, particularly
when the table has a FOREIGN KEY that references its own PRIMARY KEY. It is
necessary to ensure that the join statement defines an alias for both copies of the
table to avoid column ambiguity.
The below query is an example of a self join,

SELECT a.sales_person_id, a.name, a.manager_id, b.sales_person_id,

b.name

FROM sales_person a, sales_person b

WHERE a.manager_id = b.sales_person_id;

2) SQL Non Equi Join:
A Non Equi Join is a SQL Join whose condition is established using all comparison
operators except the equal (=) operator. Like >=, <=, <, >

For example: If you want to find the names of students who are not studying
either Economics, the sql query would be like, (lets use student_details table
defined earlier.)

SELECT first_name, last_name, subject

beginner‐SQL‐tutorial.docx

 37

FROM student_details

WHERE subject != 'Economics'

The output would be something like,

first_name last_name subject

Anajali Bhagwat Maths

Shekar Gowda Maths

Rahul Sharma Science

Stephen Fleming Science

SQL Views
A VIEW is a virtual table, through which a selective portion of the data from one
or more tables can be seen. Views do not contain data of their own. They are used
to restrict access to the database or to hide data complexity. A view is stored as
a SELECT statement in the database. DML operations on a view like INSERT,
UPDATE, DELETE affects the data in the original table upon which the view is
based.
The Syntax to create a sql view is

CREATE VIEW view_name AS

SELECT column_list

FROM table_name [WHERE condition];

 view_name is the name of the VIEW.
 The SELECT statement is used to define the columns and rows that you want

to display in the view.

For Example: to create a view on the product table the sql query would be like

CREATE VIEW view_product AS

SELECT product_id, product_name

FROM product;

beginner‐SQL‐tutorial.docx

 38

SQL Subquery
Subquery or Inner query or Nested query is a query in a query. A subquery is
usually added in the WHERE Clause of the sql statement. Most of the time, a
subquery is used when you know how to search for a value using a SELECT
statement, but do not know the exact value.

Subqueries are an alternate way of returning data from multiple tables.
Subqueries can be used with the following sql statements along with the
comparison operators like =, <, >, >=, <= etc.
 SELECT
 INSERT
 UPDATE
 DELETE

For Example:
1) Usually, a subquery should return only one record, but sometimes it can also
return multiple records when used with operators like IN, NOT IN in the where
clause. The query would be like,

SELECT first_name, last_name, subject

FROM student_details

WHERE games NOT IN ('Cricket', 'Football');

The output would be similar to:

first_name last_name subject

Shekar Gowda Badminton

Priya Chandra Chess

2) Lets consider the student_details table which we have used earlier. If you
know the name of the students who are studying science subject, you can get
their id's by using this query below,

SELECT id, first_name

FROM student_details

WHERE first_name IN ('Rahul', 'Stephen');

beginner‐SQL‐tutorial.docx

 39

but, if you do not know their names, then to get their id's you need to write the
query in this manner,

SELECT id, first_name

FROM student_details

WHERE id IN (SELECT id FROM student_courses

WHERE subject= 'Science');

Output:

id first_name

100 Rahul

102 Stephen

In the above sql statement, first the inner query is processed first and then the
outer query is processed.

3) Subquery can be used with INSERT statement to add rows of data from one or
more tables to another table. Lets try to group all the students who study Maths
in a table 'maths_group'.

INSERT INTO maths_group(id, name)

SELECT id, first_name || ' ' || last_name

FROM student_details WHERE subject= 'Maths'

4) A subquery can be used in the SELECT statement as follows. Lets use the
product and order_items table defined in the sql_joins section.

select p.product_name, p.supplier_name, (select order_id from

order_items where product_id = 101) as order_id

from product p where p.product_id = 101

product_name supplier_name order_id

Television Onida 5103

beginner‐SQL‐tutorial.docx

 40

Correlated Subquery
A query is called correlated subquery when both the inner query and the outer
query are interdependent. For every row processed by the inner query, the outer
query is processed as well. The inner query depends on the outer query before it
can be processed.

SELECT p.product_name FROM product p

WHERE p.product_id = (SELECT o.product_id FROM order_items o

WHERE o.product_id = p.product_id);

NOTE:
1) You can nest as many queries you want but it is recommended not to nest

more than 16 subqueries in oracle.
2) If a subquery is not dependent on the outer query it is called a non-correlated

subquery.

SQL Index
Index in sql is created on existing tables to retrieve the rows quickly.
When there are thousands of records in a table, retrieving information will take a
long time. Therefore indexes are created on columns which are accessed
frequently, so that the information can be retrieved quickly. Indexes can be
created on a single column or a group of columns. When a index is created, it first
sorts the data and then it assigns a ROWID for each row.

Syntax to create Index:

CREATE INDEX index_name

ON table_name (column_name1, column_name2...);

Syntax to create SQL unique Index:

CREATE UNIQUE INDEX index_name

ON table_name (column_name1, column_name2...);

 index_name is the name of the INDEX.
 table_name is the name of the table to which indexed column belongs.
 column_name1, column_name2.. is the list of columns which make up
the INDEX.

beginner‐SQL‐tutorial.docx

 41

In Oracle there are two types of SQL index namely, implicit and explicit.
Implicit Indexes:
They are created when a column is explicitly defined with PRIMARY KEY, UNIQUE
KEY Constraint.
Explicit Indexes:
They are created using the "create index.. " syntax.

NOTE:
1) Even though sql indexes are created to access the rows in the table quickly,
they slow down DML operations like INSERT, UPDATE, DELETE on the table,
because the indexes and tables both are updated along when a DML operation is
performed. So use indexes only on columns which are used to search the table
frequently.
2) It is not required to create indexes on table which have less data.
3) In oracle database you can define up to sixteen (16) columns in an INDEX.

DCL commands are used to enforce database security in a multiple user database
environment. Two types of DCL commands are GRANT and REVOTE. Only
Database Administrator's or owner's of the database object can provide/remove
privileges on a database object.

SQL GRANT Command
SQL GRANT is a command used to provide access or privileges on the database
objects to the users.

The Syntax for the GRANT command is:

GRANT privilege_name

ON object_name

TO {user_name |PUBLIC |role_name}

[WITH GRANT OPTION];

 privilege_name is the access right or privilege granted to the user. Some
of the access rights are ALL, EXECUTE, and SELECT.

 object_name is the name of an database object like TABLE, VIEW,
STORED PROC and SEQUENCE.

beginner‐SQL‐tutorial.docx

 42

 user_name is the name of the user to whom an access right is being
granted.

 user_name is the name of the user to whom an access right is being
granted.

 PUBLIC is used to grant access rights to all users.
 ROLES are a set of privileges grouped together.
 WITH GRANT OPTION - allows a user to grant access rights to other

users.

For Example: GRANT SELECT ON employee TO user1;This command grants a
SELECT permission on employee table to user1.You should use the WITH GRANT
option carefully because for example if you GRANT SELECT privilege on employee
table to user1 using the WITH GRANT option, then user1 can GRANT SELECT
privilege on employee table to another user, such as user2 etc. Later, if you
REVOKE the SELECT privilege on employee from user1, still user2 will have
SELECT privilege on employee table.

SQL REVOKE Command:
The REVOKE command removes user access rights or privileges to the database
objects.
The Syntax for the REVOKE command is:

REVOKE privilege_name

ON object_name

FROM {user_name |PUBLIC |role_name}

For Example: REVOKE SELECT ON employee FROM user1;This command will
REVOKE a SELECT privilege on employee table from user1.When you REVOKE
SELECT privilege on a table from a user, the user will not be able to SELECT data
from that table anymore. However, if the user has received SELECT privileges on
that table from more than one users, he/she can SELECT from that table until
everyone who granted the permission revokes it. You cannot REVOKE privileges
if they were not initially granted by you.

Privileges and Roles:
Privileges: Privileges defines the access rights provided to a user on a database
object. There are two types of privileges.
1) System privileges - This allows the user to CREATE, ALTER, or DROP
database objects.

beginner‐SQL‐tutorial.docx

 43

2) Object privileges - This allows the user to EXECUTE, SELECT, INSERT,
UPDATE, or DELETE data from database objects to which the privileges apply.
Few CREATE system privileges are listed below:

System Privileges Description

CREATE object allows users to create the specified object in their own schema.

CREATE ANY object allows users to create the specified object in any schema.

The above rules also apply for ALTER and DROP system privileges.
Few of the object privileges are listed below:

Object Privileges Description

INSERT allows users to insert rows into a table.

SELECT allows users to select data from a database object.

UPDATE allows user to update data in a table.

EXECUTE allows user to execute a stored procedure or a function.

Roles: Roles are a collection of privileges or access rights. When there are many
users in a database it becomes difficult to grant or revoke privileges to users.
Therefore, if you define roles, you can grant or revoke privileges to users,
thereby automatically granting or revoking privileges. You can either create
Roles or use the system roles pre-defined by oracle.
Some of the privileges granted to the system roles are as given below:

System Role Privileges Granted to the Role

CONNECT
CREATE TABLE, CREATE VIEW, CREATE SYNONYM, CREATE SEQUENCE, CREATE

SESSION etc.

RESOURCE

CREATE PROCEDURE, CREATE SEQUENCE, CREATE TABLE, CREATE TRIGGER

etc. The primary usage of the RESOURCE role is to restrict access to database

objects.

DBA ALL SYSTEM PRIVILEGES

Creating Roles:
The Syntax to create a role is:

CREATE ROLE role_name [IDENTIFIED BY password];

For example: To create a role called "developer" with password as "pwd", the
code will be as follows

CREATE ROLE testing [IDENTIFIED BY pwd];

beginner‐SQL‐tutorial.docx

 44

It's easier to GRANT or REVOKE privileges to the users through a role rather than
assigning a privilege directly to every user. If a role is identified by a password,
then, when you GRANT or REVOKE privileges to the role, you definitely have to
identify it with the password.
We can GRANT or REVOKE privilege to a role as below.

For example: To grant CREATE TABLE privilege to a user by creating a testing
role:
First, create a testing Role

CREATE ROLE testing

Second, grant a CREATE TABLE privilege to the ROLE testing. You can add more
privileges to the ROLE.

GRANT CREATE TABLE TO testing;

Third, grant the role to a user.

GRANT testing TO user1;

To revoke a CREATE TABLE privilege from testing ROLE, you can write:

REVOKE CREATE TABLE FROM testing;

The Syntax to drop a role from the database is as below:

DROP ROLE role_name;

For example: To drop a role called developer, you can write:

DROP ROLE testing;

Oracle Built in Functions
There are two types of functions in Oracle.
1) Single Row Functions: Single row or Scalar functions return a value for

every row that is processed in a query.
2) Group Functions: These functions group the rows of data based on the

values returned by the query. This is discussed in SQL GROUP Functions. The
group functions are used to calculate aggregate values like total or average,
which return just one total or one average value after processing a group of
rows.

There are four types of single row functions. They are:

beginner‐SQL‐tutorial.docx

 45

1) Numeric Functions: These are functions that accept numeric input and
return numeric values.

2) Character or Text Functions: These are functions that accept character
input and can return both character and number values.

3) Date Functions: These are functions that take values that are of datatype
DATE as input and return values of datatype DATE, except for the
MONTHS_BETWEEN function, which returns a number.

4) Conversion Functions: These are functions that help us to convert a value in
one form to another form. For Example: a null value into an actual value, or
a value from one datatype to another datatype like NVL, TO_CHAR,
TO_NUMBER, TO_DATE etc.

You can combine more than one function together in an expression. This is known
as nesting of functions.

What is a DUAL Table in Oracle?
This is a single row and single column dummy table provided by oracle. This is
used to perform mathematical calculations without using a table.

Select * from DUAL

Output:
DUMMY

X

Select 777 * 888 from Dual

Output:
777 * 888

689976

1) Numeric Functions:
Numeric functions are used to perform operations on numbers. They accept
numeric values as input and return numeric values as output. Few of the Numeric
functions are:

Function Name Return Value

ABS (x) Absolute value of the number 'x'

CEIL (x) Integer value that is Greater than or equal to the number 'x'

FLOOR (x) Integer value that is Less than or equal to the number 'x'

TRUNC (x, y) Truncates value of number 'x' up to 'y' decimal places

ROUND (x, y) Rounded off value of the 'x' up to the 'y' decimal places

beginner‐SQL‐tutorial.docx

 46

The following examples explains the usage of the above numeric functions

Function Name Examples Return Value

ABS (x)
ABS (1)

ABS (-1)

1

-1

CEIL (x)

CEIL (2.83)

CEIL (2.49)

CEIL (-1.6)

3

3

-1

FLOOR (x)

FLOOR (2.83)

FLOOR (2.49)

FLOOR (-1.6)

2

2

-2

TRUNC (x, y)

ROUND (125.456, 1)

ROUND (125.456, 0)

ROUND (124.456, -1)

125.4

125

120

ROUND (x, y)

TRUNC (140.234, 2)

TRUNC (-54, 1)

TRUNC (5.7)

TRUNC (142, -1)

140.23

54

5

140

These functions can be used on database columns.
For Example: Let's consider the product table used in sql joins. We can use
ROUND to round off the unit_price to the nearest integer, if any product has
prices in fraction.

SELECT ROUND (unit_price) FROM product;

2) Character or Text Functions:
Character or text functions are used to manipulate text strings. They accept
strings or characters as input and can return both character and number values
as output.
Few of the character or text functions are as given below:

Function Name Return Value

LOWER (string) All the letters in 'string' is converted to lowercase.

UPPER (string) All the letters in 'string' is converted to uppercase.

INITCAP (string) All the letters in 'string' is converted to mixed case.

LTRIM (string,

trim_text)
All occurrences of 'trim_text' is removed from the left of 'string'.

RTRIM (string,

trim_text)
All occurrences of 'trim_text' is removed from the right of 'string' .

beginner‐SQL‐tutorial.docx

 47

TRIM (trim_text FROM

string)

All occurrences of 'trim_text' from the left and right of 'string' ,

'trim_text' can also be only one character long .

SUBSTR (string, m, n)
Returns 'n' number of characters from 'string' starting from the 'm'

position.

LENGTH (string) Number of characters in 'string' in returned.

LPAD (string, n,

pad_value)

Returns 'string' left-padded with 'pad_value' . The length of the whole

string will be of 'n' characters.

RPAD (string, n,

pad_value)

Returns 'string' right-padded with 'pad_value' . The length of the whole

string will be of 'n' characters.

For Example, we can use the above UPPER() text function with the column value
as follows.

SELECT UPPER (product_name) FROM product;

The following examples explains the usage of the above character or text
functions

Function Name Examples Return Value

LOWER(string_value) LOWER('Good Morning') good morning

UPPER(string_value) UPPER('Good Morning') GOOD MORNING

INITCAP(string_value) INITCAP('GOOD MORNING') Good Morning

LTRIM(string_value, trim_text) LTRIM ('Good Morning', 'Good) Morning

RTRIM (string_value, trim_text) RTRIM ('Good Morning', ' Morning') Good

TRIM (trim_text FROM string_value) TRIM ('o' FROM 'Good Morning') Gd Mrning

SUBSTR (string_value, m, n) SUBSTR ('Good Morning', 6, 7) Morning

LENGTH (string_value) LENGTH ('Good Morning') 12

LPAD (string_value, n, pad_value) LPAD ('Good', 6, '*') **Good

RPAD (string_value, n, pad_value) RPAD ('Good', 6, '*') Good**

3) Date Functions:
These are functions that take values that are of datatype DATE as input and
return values of datatypes DATE, except for the MONTHS_BETWEEN function,
which returns a number as output.
Few date functions are as given below.

Function Name Return Value

ADD_MONTHS(date,n) Returns a date value after adding 'n' months to the date 'x'.

beginner‐SQL‐tutorial.docx

 48

MONTHS_BETWEEN

(x1, x2)
Returns the number of months between dates x1 and x2.

ROUND (x,

date_format)

Returns the date 'x' rounded off to the nearest century, year, month,

date, hour, minute, or second as specified by the 'date_format'.

TRUNC (x,

date_format)

Returns the date 'x' lesser than or equal to the nearest century, year,

month, date, hour, minute, or second as specified by the 'date_format'.

NEXT_DAY (x,

week_day)
Returns the next date of the 'week_day' on or after the date 'x' occurs.

LAST_DAY (x)
It is used to determine the number of days remaining in a month from

the date 'x' specified.

SYSDATE Returns the systems current date and time.

NEW_TIME (x, zone1,

zone2)

Returns the date and time in zone2 if date 'x' represents the time in

zone1.

The below table provides the examples for the above functions

Function Name Examples Return Value

ADD_MONTHS () ADD_MONTHS ('16-Sep-81', 3) 16-Dec-81

MONTHS_BETWEEN() MONTHS_BETWEEN ('16-Sep-81', '16-Dec-81') 3

NEXT_DAY() NEXT_DAY ('01-Jun-08', 'Wednesday') 04-JUN-08

LAST_DAY() LAST_DAY ('01-Jun-08') 30-Jun-08

NEW_TIME() NEW_TIME ('01-Jun-08', 'IST', 'EST') 31-May-08

4) Conversion Functions:
These are functions that help us to convert a value in one form to another form.
For Ex: a null value into an actual value, or a value from one datatype to another
datatype like NVL, TO_CHAR, TO_NUMBER, TO_DATE.
Few of the conversion functions available in oracle are:

Function Name Return Value

TO_CHAR (x [,y])
Converts Numeric and Date values to a character string value. It

cannot be used for calculations since it is a string value.

TO_DATE (x [,

date_format])

Converts a valid Numeric and Character values to a Date value. Date

is formatted to the format specified by 'date_format'.

NVL (x, y)
If 'x' is NULL, replace it with 'y'. 'x' and 'y' must be of the same

datatype.

DECODE (a, b, c, d, e,

default_value)

Checks the value of 'a', if a = b, then returns 'c'. If a = d, then returns

'e'. Else, returns default_value.

beginner‐SQL‐tutorial.docx

 49

The below table provides the examples for the above functions

Function Name Examples Return Value

TO_CHAR ()
TO_CHAR (3000, '$9999')

TO_CHAR (SYSDATE, 'Day, Month YYYY')

$3000

Monday, June 2008

TO_DATE () TO_DATE ('01-Jun-08') 01-Jun-08

NVL () NVL (null, 1) 1

SQL Tuning or SQL Optimization
Sql Statements are used to retrieve data from the database. We can get same
results by writing different sql queries. But use of the best query is important
when performance is considered. So you need to sql query tuning based on the
requirement. Here is the list of queries which we use regularly and how these sql
queries can be optimized for better performance.

SQL Tuning/SQL Optimization Techniques:
1) The sql query becomes faster if you use the actual columns names in SELECT
statement instead of than '*'.
For Example: Write the query as

SELECT id, first_name, last_name, age, subject FROM student_details;

Instead of:

SELECT * FROM student_details;

2) HAVING clause is used to filter the rows after all the rows are selected. It is
just like a filter. Do not use HAVING clause for any other purposes.
For Example: Write the query as

SELECT subject, count(subject)

FROM student_details

WHERE subject != 'Science'

AND subject != 'Maths'

GROUP BY subject;

Instead of:

beginner‐SQL‐tutorial.docx

 50

SELECT subject, count(subject)

FROM student_details

GROUP BY subject

HAVING subject!= 'Vancouver' AND subject!= 'Toronto';

3) Sometimes you may have more than one subqueries in your main query. Try
to minimize the number of subquery block in your query.
For Example: Write the query as

SELECT name

FROM employee

WHERE (salary, age) = (SELECT MAX (salary), MAX (age)

FROM employee_details)

AND dept = 'Electronics';

Instead of:

SELECT name

FROM employee

WHERE salary = (SELECT MAX(salary) FROM employee_details)

AND age = (SELECT MAX(age) FROM employee_details)

AND emp_dept = 'Electronics';

4) Use operator EXISTS, IN and table joins appropriately in your query.
a) Usually IN has the slowest performance.
b) IN is efficient when most of the filter criteria is in the sub-query.
c) EXISTS is efficient when most of the filter criteria is in the main query.

For Example: Write the query as

beginner‐SQL‐tutorial.docx

 51

Select * from product p

where EXISTS (select * from order_items o

where o.product_id = p.product_id)

Instead of:

Select * from product p

where product_id IN

(select product_id from order_items)

5) Use EXISTS instead of DISTINCT when using joins which involves tables
having one-to-many relationship.
For Example: Write the query as

SELECT d.dept_id, d.dept

FROM dept d

WHERE EXISTS (SELECT 'X' FROM employee e WHERE e.dept = d.dept);

Instead of:

SELECT DISTINCT d.dept_id, d.dept

FROM dept d, employee e

WHERE e.dept = d.dept;

6) Try to use UNION ALL in place of UNION.
For Example: Write the query as

SELECT id, first_name FROM student_details_class10

UNION ALL

SELECT id, first_name FROM sports_team;

Instead of:

beginner‐SQL‐tutorial.docx

 52

SELECT id, first_name FROM student_details_class10

UNION

SELECT id, first_name FROM sports_team;

7) Be careful while using conditions in WHERE clause.
For Example: Write the query as

SELECT id, first_name, age FROM student_details WHERE age > 10;

Instead of:

SELECT id, first_name, age FROM student_details WHERE age != 10;

Write the query as

SELECT id, first_name, age

FROM student_details

WHERE first_name LIKE 'Chan%';

Instead of:

SELECT id, first_name, age

FROM student_details

WHERE SUBSTR(first_name,1,3) = 'Cha';

Write the query as

SELECT id, first_name, age

FROM student_details

WHERE first_name LIKE NVL (:name, '%');

Instead of:

SELECT id, first_name, age

beginner‐SQL‐tutorial.docx

 53

FROM student_details

WHERE first_name = NVL (:name, first_name);

Write the query as

SELECT product_id, product_name

FROM product

WHERE unit_price BETWEEN MAX(unit_price) and MIN(unit_price)

Instead of:

SELECT product_id, product_name

FROM product

WHERE unit_price >= MAX(unit_price)

and unit_price <= MIN(unit_price)

Write the query as

SELECT id, name, salary

FROM employee

WHERE dept = 'Electronics'

AND location = 'Bangalore';

Instead of:

SELECT id, name, salary

FROM employee

WHERE dept || location= 'ElectronicsBangalore';

beginner‐SQL‐tutorial.docx

 54

Use non-column expression on one side of the query because it will be processed
earlier.
Write the query as

SELECT id, name, salary

FROM employee

WHERE salary < 25000;

Instead of:

SELECT id, name, salary

FROM employee

WHERE salary + 10000 < 35000;

Write the query as

SELECT id, first_name, age

FROM student_details

WHERE age > 10;

Instead of:

SELECT id, first_name, age

FROM student_details

WHERE age NOT = 10;

8) Use DECODE to avoid the scanning of same rows or joining the same table
repetitively. DECODE can also be made used in place of GROUP BY or ORDER BY
clause.
For Example: Write the query as

SELECT id FROM employee

WHERE name LIKE 'Ramesh%' and location = 'Bangalore';

beginner‐SQL‐tutorial.docx

 55

Instead of:

SELECT DECODE(location,'Bangalore',id,NULL) id FROM employee

WHERE name LIKE 'Ramesh%';

9) To store large binary objects, first place them in the file system and add the
file path in the database.

10) To write queries which provide efficient performance follow the general SQL
standard rules.
a) Use single case for all SQL verbs
b) Begin all SQL verbs on a new line
c) Separate all words with a single space
d) Right or left aligning verbs within the initial SQL verb

