
 1

http://www.thedataanalysis.com/sql/sql-programming.html

SQL: UPDATE Statement
The UPDATE statement allows you to update a single record or multiple records
in a table.
The syntax for the UPDATE statement is:
UPDATE table
SET column = expression
WHERE predicates;

Example #1 - Simple example
Let's take a look at a very simple example.
CREATE TABLE suppliers(
 supplier_id number(10) not null,
 supplier_name varchar2(50) not null,
 city varchar2(50),
 CONSTRAINT suppliers_pk PRIMARY KEY (supplier_id)
);

INSERT INTO suppliers (supplier_id, supplier_name, city)
VALUES (5001, 'Microsoft', 'New York');
INSERT INTO suppliers (supplier_id, supplier_name, city)
VALUES (5002, 'IBM', 'Chicago');
INSERT INTO suppliers (supplier_id, supplier_name, city)
VALUES (5003, 'Red Hat', 'Detroit');
INSERT INTO suppliers (supplier_id, supplier_name, city)
VALUES (5004, 'NVIDIA', 'New York');

UPDATE suppliers
SET name = 'HP'
WHERE name = 'IBM';
This statement would update all supplier names in the suppliers table from IBM to
HP.

Example #2 - More complex example
You can also perform more complicated updates.
You may wish to update records in one table based on values in another table.
Since you can't list more than one table in the UPDATE statement, you can use
the EXISTS clause.

 2

For example:
UPDATE suppliers
SET supplier_name =
 (SELECT customers.name
 FROM customers
 WHERE customers.customer_id = suppliers.supplier_id)
WHERE EXISTS
 (SELECT customers.name
 FROM customers
 WHERE customers.customer_id = suppliers.supplier_id);
Whenever a supplier_id matched a customer_id value, the supplier_name would
be overwritten to the customer name from the customers table.

Practice Exercise #1:
Based on the suppliers table populated with the following data, update the city to
"Santa Clara" for all records whose supplier_name is "NVIDIA".

Solution: The following SQL statement would perform this update.
UPDATE suppliers
SET city = 'Santa Clara'
WHERE supplier_name = 'NVIDIA';
The suppliers table would now look like this:

SUPPLIER_ID SUPPLIER_NAME CITY

5001 Microsoft New York

5002 IBM Chicago

5003 Red Hat Detroit

5004 NVIDIA Santa Clara

Practice Exercise #2:
Based on the suppliers and customers table populated with the following data,
update the city in the suppliers table with the city in the customers table when
the supplier_name in the suppliers table matches the customer_name in the
customers table.
CREATE TABLE suppliers(
 supplier_id number(10) not null,
 supplier_name varchar2(50) not null,
 city varchar2(50),
 CONSTRAINT suppliers_pk PRIMARY KEY (supplier_id)

 3

);

INSERT INTO suppliers (supplier_id, supplier_name, city)
VALUES (5001, 'Microsoft', 'New York');
INSERT INTO suppliers (supplier_id, supplier_name, city)
VALUES (5002, 'IBM', 'Chicago');
INSERT INTO suppliers (supplier_id, supplier_name, city)
VALUES (5003, 'Red Hat', 'Detroit');
INSERT INTO suppliers (supplier_id, supplier_name, city)
VALUES (5005, 'NVIDIA', 'LA');

CREATE TABLE customers(
 customer_id number(10) not null,
 customer_name varchar2(50) not null,
 city varchar2(50),
 CONSTRAINT customers_pk PRIMARY KEY (customer_id)
);

INSERT INTO customers (customer_id, customer_name, city)
VALUES (7001, 'Microsoft', 'San Francisco');
INSERT INTO customers (customer_id, customer_name, city)
VALUES (7002, 'IBM', 'Toronto');
INSERT INTO customers (customer_id, customer_name, city)
VALUES (7003, 'Red Hat', 'Newark');

Solution:
The following SQL statement would perform this update.
UPDATE suppliers
SET city = (SELECT customers.city
FROM customers
WHERE customers.customer_name = suppliers.supplier_name)
WHERE EXISTS
 (SELECT customers.city
 FROM customers
 WHERE customers.customer_name = suppliers.supplier_name);

The suppliers table would now look like this:

SUPPLIER_ID SUPPLIER_NAME CITY

5001 Microsoft San Francisco

 4

5002 IBM Toronto

5003 Red Hat Newark

5004 NVIDIA LA

SQL: SUM Function
The SUM function returns the summed value of an expression.
The syntax for the SUM function is:
SELECT SUM(expression)
FROM tables
WHERE predicates;
Expression can be a numeric field or formula.

Simple Example
For example, you might wish to know how the combined total salary of all
employees whose salary is above $25,000 / year.
SELECT SUM(salary) AS "Total Salary"
FROM employees
WHERE salary > 25000;
In this example, we've aliased the SUM(salary) field as "Total Salary". As a result,
"Total Salary" will display as the field name when the result set is returned.

Example using DISTINCT
You can use the DISTINCT clause within the SUM function. For example, the SQL
statement below returns the combined total salary of unique salary values where
the salary is above $25,000 / year.
SELECT SUM(DISTINCT salary) AS "Total Salary"
FROM employees
WHERE salary > 25000;
If there were two salaries of $30,000/year, only one of these values would be
used in the SUM function.

Example using a Formula
The expression contained within the SUM function does not need to be a single
field. You could also use a formula. For example, you might want the net income
for a business. Net Income is calculated as total income less total expenses.
SELECT SUM(income - expenses) AS "Net Income"
FROM gl_transactions;
You might also want to perform a mathematical operation within a SUM function.
For example, you might determine total commission as 10% of total sales.

 5

SELECT SUM(sales * 0.10) AS "Commission"
FROM order_details;

Example using GROUP BY
In some cases, you will be required to use a GROUP BY clause with the SUM
function.
For example, you could also use the SUM function to return the name of the
department and the total sales (in the associated department).
SELECT department, SUM(sales) AS "Total sales"
FROM order_details
GROUP BY department;
Because you have listed one column in your SELECT statement that is not
encapsulated in the SUM function, you must use a GROUP BY clause. The
department field must, therefore, be listed in the GROUP BY section.

SQL: "IN" Function
The IN function helps reduce the need to use multiple OR conditions.
The syntax for the IN function is:
SELECT columns
FROM tables
WHERE column1 in (value1, value2, value_n);
This SQL statement will return the records where column1 is value1, value2..., or
value_n.
The IN function can be used in any valid SQL statement - select, insert, update,
or delete.

Example #1
The following is an SQL statement that uses the IN function:
SELECT *
FROM suppliers
WHERE supplier_name in ('IBM', 'Hewlett Packard', 'Microsoft');
This would return all rows where the supplier_name is either IBM, Hewlett
Packard, or Microsoft.
Because the * is used in the select, all fields from the suppliers table would
appear in the result set.

It is equivalent to the following statement:
SELECT *
FROM suppliers
WHERE supplier_name = 'IBM'

 6

OR supplier_name = 'Hewlett Packard'
OR supplier_name = 'Microsoft';
As you can see, using the IN function makes the statement easier to read and
more efficient.

Example #2
You can also use the IN function with numeric values.
SELECT *
FROM orders
WHERE order_id IN (10000, 10001, 10003, 10005);
This SQL statement would return all orders where the order_id is either 10000,
10001, 10003, or 10005.

It is equivalent to the following statement:
SELECT *
FROM orders
WHERE order_id = 10000
OR order_id = 10001 OR order_id = 10003 OR order_id = 10005;

Example #3 using "NOT IN"
The IN function can also be combined with the NOT operator.
For example,
SELECT *
FROM suppliers
WHERE supplier_name NOT IN ('IBM', 'Hewlett Packard', 'Microsoft');
This would return all rows where the supplier_name is neither IBM, Hewlett
Packard, or Microsoft. Sometimes, it is more efficient to list the values that you
do not want, as opposed to the values that you do want.

SQL: HAVING Clause
The HAVING clause is used in combination with the GROUP BY clause. It can be
used in a SELECT statement to filter the records that a GROUP BY returns.
The syntax for the HAVING clause is:
SELECT column1, column2, column3,..col_n, aggregate_function (expression)
FROM tables
WHERE predicates
GROUP BY column1, column2, ... column_n
HAVING condition1 ... condition_n;
aggregate_function can be a function such as SUM, Count, MIN or MAX.

 7

Example using the SUM function
For example, you could also use the SUM function to return the name of the
department and the total sales (in the associated department). The HAVING
clause will filter the results so that only departments with sales greater than
$1000 will be returned.
SELECT department, SUM(sales) as "Total sales"
FROM order_details
GROUP BY department
HAVING SUM(sales) > 1000;

Example using the COUNT function
For example, you could use the COUNT function to return the name of the
department and the number of employees (in the associated department) that
make over $25,000 / year. The HAVING clause will filter the results so that only
departments with more than 10 employees will be returned.
SELECT department, COUNT(*) as "Number of employees"
FROM employees
WHERE salary > 25000
GROUP BY department
HAVING COUNT(*) > 10;

Example using the MIN function
For example, you could also use the MIN function to return the name of each
department and the minimum salary in the department. The HAVING clause will
return only those departments where the starting salary is $35,000.
SELECT department, MIN(salary) as "Lowest salary"
FROM employees
GROUP BY department
HAVING MIN(salary) = 35000;

Example using the MAX function
For example, you could also use the MAX function to return the name of each
department and the maximum salary in the department. The HAVING clause will
return only those departments whose maximum salary is less than $50,000.
SELECT department, MAX(salary) as "Highest salary"
FROM employees
GROUP BY department
HAVING MAX(salary) < 50000;

SQL: GROUP BY Clause

 8

The GROUP BY clause can be used in a SELECT statement to collect data across
multiple records and group the results by one or more columns. The syntax for
the GROUP BY clause is:
SELECT column1, column2,column_n, aggregate_function (expression)
FROM tables
WHERE predicates
GROUP BY column1, column2, ... column_n;
aggregate_function can be a function such as SUM, Count, MIN or MAX.

Example using the SUM function
For example, you could also use the SUM function to return the name of the
department and the total sales (in the associated department).
SELECT department, SUM(sales) as "Total sales"
FROM order_details
GROUP BY department;
Because you have listed one column in your SELECT statement that is not
encapsulated in the SUM function, you must use a GROUP BY clause.
The department field must, therefore, be listed in the GROUP BY section.

Example using the COUNT function
For example, you could use the COUNT function to return the name of the
department and the number of employees (in the associated department) that
make over $25,000 / year.
SELECT department, COUNT(*) as "Number of employees"
FROM employees
WHERE salary > 25000
GROUP BY department;

Example using the MIN function
For example, you could also use the MIN function to return the name of each
department and the minimum salary in the department.
SELECT department, MIN(salary) as "Lowest salary"
FROM employees
GROUP BY department;

Example using the MAX function
For example, you could also use the MAX function to return the name of each
department and the maximum salary in the department.
SELECT department, MAX(salary) as "Highest salary"
FROM employees

 9

GROUP BY department;

SQL: EXISTS Condition
The EXISTS condition is considered "to be met" if the subquery returns at least
one row. The syntax for the EXISTS condition is:
SELECT columns
FROM tables
WHERE EXISTS (subquery);
The EXISTS condition can be used in any valid SQL statement - select, insert,
update, or delete.

Example #1
Let's take a look at a simple example.
The following is an SQL statement that uses the EXISTS condition:
SELECT *
FROM suppliers
WHERE EXISTS
 (select *
 from orders
 where suppliers.supplier_id = orders.supplier_id);
This select statement will return all records from the suppliers table where there
is at least one record in the orders table with the same supplier_id.

Example #2 - NOT EXISTS
The EXISTS condition can also be combined with the NOT operator.
For example,
SELECT *
FROM suppliers
WHERE not exists (select * from orders
 Where suppliers.supplier_id = orders.supplier_id);
This will return all records from the suppliers table where there are no records in
the orders table for the given supplier_id.

Example #3 - DELETE Statement
The following is an example of a delete statement that utilizes the EXISTS
condition:
DELETE FROM suppliers
WHERE EXISTS
 (select *
 from orders

 10

 where suppliers.supplier_id = orders.supplier_id);

Example #4 - UPDATE Statement
The following is an example of an update statement that utilizes the EXISTS
condition:
UPDATE suppliers
SET supplier_name = (SELECT customers.name
 FROM customers
 WHERE customers.customer_id = suppliers.supplier_id)
WHERE EXISTS
 (SELECT customers.name
 FROM customers
 WHERE customers.customer_id = suppliers.supplier_id);

Example #5 - INSERT Statement
The following is an example of an insert statement that utilizes the EXISTS
condition:
INSERT INTO suppliers (supplier_id, supplier_name)
SELECT account_no, name
FROM suppliers
WHERE exists
 (select * from orders
 Where suppliers.supplier_id = orders.supplier_id);

SQL: COUNT Function
The COUNT function returns the number of rows in a query.
The syntax for the COUNT function is:
SELECT COUNT(expression)
FROM tables
WHERE predicates;
Note:The COUNT function will only count those records in which the field in the
brackets is NOT NULL.
For example, if you have the following table called suppliers:

Supplier_ID Supplier_Name State

1 IBM CA

2 Microsoft

3 NVIDIA

The result for this query will return 3.

 11

Select COUNT(Supplier_ID) from suppliers;
While the result for the next query will only return 1, since there is only one row
in the suppliers table where the State field is NOT NULL.
Select COUNT(State) from suppliers;
For example, you might wish to know how many employees have a salary that is
above $25,000 / year.
SELECT COUNT(*) as "Number of employees"
FROM employees
WHERE salary > 25000;
In this example, we've aliased the count(*) field as "Number of employees". As a
result, "Number of employees" will display as the field name when the result set
is returned.

Example using DISTINCT
You can use the DISTINCT clause within the COUNT function.
For example, the SQL statement below returns the number of unique
departments where at least one employee makes over $25,000 / year.
SELECT COUNT(DISTINCT department) as "Unique departments"
FROM employees
WHERE salary > 25000;
Again, the count(DISTINCT department) field is aliased as "Unique departments".
This is the field name that will display in the result set.

Example using GROUP BY
In some cases, you will be required to use a GROUP BY clause with the COUNT
function. For example, you could use the COUNT function to return the name of
the department and the number of employees (in the associated department)
that make over $25,000 / year.
SELECT department, COUNT(*) as "Number of employees"
FROM employees
WHERE salary > 25000
GROUP BY department;
Because you have listed one column in your SELECT statement that is not
encapsulated in the COUNT function, you must use a GROUP BY clause. The
department field must, therefore, be listed in the GROUP BY section.

TIP: Performance Tuning !!
Since the COUNT function will return the same results regardless of what NOT
NULL field(s) you include as the COUNT function parameters (ie: within the
brackets), you can change the syntax of the COUNT function to COUNT(1) to get

 12

better performance as the database engine will not have to fetch back the data
fields.

For example, based on the example above, the following syntax would result in
better performance:
SELECT department, COUNT(1) as "Number of employees"
FROM employees
WHERE salary > 25000
GROUP BY department;
Now, the COUNT function does not need to retrieve all fields from the employees
table as it had to when you used the COUNT(*) syntax. It will merely retrieve the
numeric value of 1 for each record that meets your criteria.

Practice Exercise #1:
Based on the employees table populated with the following data, count the
number of employees whose salary is over $55,000 per year.
CREATE TABLE employees(
 employee_number number(10) not null,
 employee_name varchar2(50) not null,
 salary number(6),
 CONSTRAINT employees_pk PRIMARY KEY (employee_number)
);

INSERT INTO employees (employee_number, employee_name, salary)
VALUES (1001, 'John Smith', 62000);
INSERT INTO employees (employee_number, employee_name, salary)
VALUES (1002, 'Jane Anderson', 57500);
INSERT INTO employees (employee_number, employee_name, salary)
VALUES (1003, 'Brad Everest', 71000);
INSERT INTO employees (employee_number, employee_name, salary)
VALUES (1004, 'Jack Horvath', 42000);
Solution:
Although inefficient in terms of performance, the following SQL statement would
return the number of employees whose salary is over $55,000 per year.
SELECT COUNT(*) as "Number of employees"
FROM employees
WHERE salary > 55000;
It would return the following result set:

Number of employees

 13

3

A more efficient implementation of the same solution would be the following SQL
statement:
SELECT COUNT(1) as "Number of employees"
FROM employees
WHERE salary > 55000;
Now, the COUNT function does not need to retrieve all of the fields from the table
(ie: employee_number, employee_name, and salary), but rather whenever the
condition is met, it will retrieve the numeric value of 1. Thus, increasing the
performance of the SQL statement.

Practice Exercise #2:
Based on the suppliers table populated with the following data, count the number
of distinct cities in the suppliers table:
CREATE TABLE suppliers(
 supplier_id number(10) not null,
 supplier_name varchar2(50) not null,
 city varchar2(50),
 CONSTRAINT suppliers_pk PRIMARY KEY (supplier_id)
);

INSERT INTO suppliers (supplier_id, supplier_name, city)
VALUES (5001, 'Microsoft', 'New York');
INSERT INTO suppliers (supplier_id, supplier_name, city)
VALUES (5002, 'IBM', 'Chicago');
INSERT INTO suppliers (supplier_id, supplier_name, city)
VALUES (5003, 'Red Hat', 'Detroit');
INSERT INTO suppliers (supplier_id, supplier_name, city)
VALUES (5004, 'NVIDIA', 'New York');
INSERT INTO suppliers (supplier_id, supplier_name, city)
VALUES (5005, 'NVIDIA', 'LA');

Solution:
The following SQL statement would return the number of distinct cities in the
suppliers table:
SELECT COUNT(DISTINCT city) as "Distinct Cities"
FROM suppliers;
It would return the following result set:

Distinct Cities

 14

4

Practice Exercise #3:
Based on the customers table populated with the following data, count the
number of distinct cities for each customer_name in the customers table:
CREATE TABLE customers(
 customer_id number(10) not null,
 customer_name varchar2(50) not null,
 city varchar2(50),
 CONSTRAINT customers_pk PRIMARY KEY (customer_id)
);

INSERT INTO customers (customer_id, customer_name, city)
VALUES (7001, 'Microsoft', 'New York');
INSERT INTO customers (customer_id, customer_name, city)
VALUES (7002, 'IBM', 'Chicago');
INSERT INTO customers (customer_id, customer_name, city)
VALUES (7003, 'Red Hat', 'Detroit');
INSERT INTO customers (customer_id, customer_name, city)
VALUES (7004, 'Red Hat', 'New York');
INSERT INTO customers (customer_id, customer_name, city)
VALUES (7005, 'Red Hat', 'San Francisco');
INSERT INTO customers (customer_id, customer_name, city)
VALUES (7006, 'NVIDIA', 'New York');
INSERT INTO customers (customer_id, customer_name, city)
VALUES (7007, 'NVIDIA', 'LA');
INSERT INTO customers (customer_id, customer_name, city)
VALUES (7008, 'NVIDIA', 'LA');

Solution:
The following SQL statement would return the number of distinct cities for each
customer_name in the customers table:
SELECT customer_name, COUNT(DISTINCT city) as "Distinct Cities"
FROM customers
GROUP BY customer_name;
It would return the following result set:

CUSTOMER_NAME Distinct Cities

IBM 1

 15

Microsoft 1

NVIDIA 2

Red Hat 3

SQL: Combining the "AND" and "OR" Conditions
The AND and OR conditions can be combined in a single SQL statement. It can be
used in any valid SQL statement - select, insert, update, or delete. When
combining these conditions, it is important to use brackets so that the database
knows what order to evaluate each condition.

Example #1
The first example that we'll take a look at an example that combines the AND and
OR conditions.
SELECT *
FROM suppliers
WHERE (city = 'New York' and name = 'IBM')
 or (city = 'Newark');
This would return all suppliers that reside in New York whose name is IBM and all
suppliers that reside in Newark. The brackets determine what order the AND and
OR conditions are evaluated in.

Example #2
The next example takes a look at a more complex statement.
For example:
SELECT supplier_id
FROM suppliers
WHERE (name = 'IBM')
 or (name = 'Hewlett Packard' and city = 'Atlantic City')
 or (name = 'Gateway' and status = 'Active' and city = 'Burma');
This SQL statement would return all supplier_id values where the supplier's name
is IBM or the name is Hewlett Packard and the city is Atlantic City or the name is
Gateway, the status is Active, and the city is Burma.

SQL: BETWEEN Condition
The BETWEEN condition allows you to retrieve values within a range. The syntax
for the BETWEEN condition is:
SELECT columns
FROM tables
WHERE column1 between value1 and value2;

 16

This SQL statement will return the records where column1 is within the range of
value1 and value2 (inclusive). The BETWEEN function can be used in any valid
SQL statement - select, insert, update, or delete.

Example #1 - Numbers
The following is an SQL statement that uses the BETWEEN function:
SELECT *
FROM suppliers
WHERE supplier_id between 5000 AND 5010;
This would return all rows where the supplier_id is between 5000 and 5010,
inclusive. It is equivalent to the following SQL statement:
SELECT *
FROM suppliers
WHERE supplier_id >= 5000
AND supplier_id <= 5010;

Example #2 - Dates
You can also use the BETWEEN function with dates.
SELECT *
FROM orders
WHERE order_date between to_date ('2003/01/01', 'yyyy/mm/dd')
 AND to_date ('2003/12/31', 'yyyy/mm/dd');
This SQL statement would return all orders where the order_date is between Jan
1, 2003 and Dec 31, 2003 (inclusive).

It would be equivalent to the following SQL statement:
SELECT *
FROM orders
WHERE order_date >= to_date('2003/01/01', 'yyyy/mm/dd')
 AND order_date <= to_date('2003/12/31','yyyy/mm/dd');

Example #3 - NOT BETWEEN
The BETWEEN function can also be combined with the NOT operator. For
example,
SELECT *
FROM suppliers
WHERE supplier_id not between 5000 and 5500;
This would be equivalent to the following SQL:
SELECT *

 17

FROM suppliers
WHERE supplier_id < 5000
OR supplier_id > 5500;
In this example, the result set would exclude all supplier_id values between the
range of 5000 and 5500 (inclusive).

SQL: "AND" Condition
The AND condition allows you to create an SQL statement based on 2 or more
conditions being met. It can be used in any valid SQL statement - select, insert,
update, or delete. The syntax for the AND condition is:
SELECT columns
FROM tables
WHERE column1 = 'value1'
 and column2 = 'value2';
The AND condition requires that each condition be must be met for the record to
be included in the result set. In this case, column1 has to equal 'value1' and
column2 has to equal 'value2'.

Example #1
The first example that we'll take a look at involves a very simple example using
the AND condition.
SELECT *
FROM suppliers
WHERE city = 'New York'
 and type = 'PC Manufacturer';

This would return all suppliers that reside in New York and are PC Manufacturers.
Because the * is used in the select, all fields from the supplier table would appear
in the result set.

Example #1
Our next example demonstrates how the AND condition can be used to "join"
multiple tables in an SQL statement.
SELECT orders.order_id, suppliers.supplier_name
FROM suppliers, orders
WHERE suppliers.supplier_id = orders.supplier_id
 and suppliers.supplier_name = 'IBM';

This would return all rows where the supplier_name is IBM. And the suppliers and
orders tables are joined on supplier_id. You will notice that all of the fields are

 18

prefixed with the table names (ie: orders.order_id). This is required to eliminate
any ambiguity as to which field is being referenced; as the same field name can
exist in both the suppliers and orders tables. In this case, the result set would
only display the order_id and supplier_name fields (as listed in the first part of
the select statement.).

SQL: WHERE Clause
The WHERE clause allows you to filter the results from an SQL statement - select,
insert, update, or delete statement. It is difficult to explain the basic syntax for
the WHERE clause, so instead, we'll take a look at some examples.

Example #1
SELECT *
FROM suppliers
WHERE supplier_name = 'IBM';
In this first example, we've used the WHERE clause to filter our results from the
suppliers table. The SQL statement above would return all rows from the
suppliers table where the supplier_name is IBM. Because the * is used in the
select, all fields from the suppliers table would appear in the result set.

Example #2
SELECT supplier_id
FROM suppliers
WHERE supplier_name = 'IBM'
 or supplier_city = 'Newark';
We can define a WHERE clause with multiple conditions. This SQL statement
would return all supplier_id values where the supplier_name is IBM or the
supplier_city is Newark.

Example #3
SELECT suppliers.suppler_name, orders.order_id
FROM suppliers, orders
WHERE suppliers.supplier_id = orders.supplier_id
and suppliers.supplier_city = 'Atlantic City';
We can also use the WHERE clause to join multiple tables together in a single SQL
statement. This SQL statement would return all supplier names and order_ids
where there is a matching record in the suppliers and orders tables based on
supplier_id, and where the supplier_city is Atlantic City.

SQL: ORDER BY Clause

 19

The ORDER BY clause allows you to sort the records in your result set. The ORDER
BY clause can only be used in SELECT statements.
The syntax for the ORDER BY clause is:
SELECT columns
FROM tables
WHERE predicates
ORDER BY column ASC/DESC;
The ORDER BY clause sorts the result set based on the columns specified. If the
ASC or DESC value is omitted, it is sorted by ASC.
ASC indicates ascending order. (default)
DESC indicates descending order.

Example #1
SELECT supplier_city
FROM suppliers
WHERE supplier_name = 'IBM'
ORDER BY supplier_city;
This would return all records sorted by the supplier_city field in ascending order.

Example #2
SELECT supplier_city
FROM suppliers
WHERE supplier_name = 'IBM'
ORDER BY supplier_city DESC;
This would return all records sorted by the supplier_city field in descending order.

Example #3
You can also sort by relative position in the result set, where the first field in the
result set is 1. The next field is 2, and so on.
SELECT supplier_city
FROM suppliers
WHERE supplier_name = 'IBM'
ORDER BY 1 DESC;
This would return all records sorted by the supplier_city field in descending order,
since the supplier_city field is in position #1 in the result set.

Example #4
SELECT supplier_city, supplier_state
FROM suppliers
WHERE supplier_name = 'IBM'

 20

ORDER BY supplier_city DESC, supplier_state ASC;
This would return all records sorted by the supplier_city field in descending order,
with a secondary sort by supplier_state in ascending order.

SQL: "OR" Condition
The OR condition allows you to create an SQL statement where records are
returned when any one of the conditions are met. It can be used in any valid SQL
statement - select, insert, update, or delete.
The syntax for the OR condition is:
SELECT columns
FROM tables
WHERE column1 = 'value1'
 or column2 = 'value2';
The OR condition requires that any of the conditions be must be met for the
record to be included in the result set. In this case, column1 has to equal 'value1'
OR column2 has to equal 'value2'.

Example #1
The first example that we'll take a look at involves a very simple example using
the OR condition.
SELECT *
FROM suppliers
WHERE city = 'New York'
 or city = 'Newark';
This would return all suppliers that reside in either New York or Newark. Because
the * is used in the select, all fields from the suppliers table would appear in the
result set.

Example #2
The next example takes a look at three conditions. If any of these conditions is
met, the record will be included in the result set.
SELECT supplier_id
FROM suppliers
WHERE name = 'IBM'
 or name = 'Hewlett Packard'
 or name = 'Gateway';
This SQL statement would return all supplier_id values where the supplier's name
is either IBM, Hewlett Packard or Gateway.

SQL: MIN Function

 21

The MIN function returns the minimum value of an expression. The syntax for the
MIN function is:
SELECT MIN(expression)
FROM tables
WHERE predicates;

Simple Example
For example, you might wish to know the minimum salary of all employees.
SELECT MIN(salary) as "Lowest salary"
FROM employees;
In this example, we've aliased the min(salary) field as "Lowest salary". As a
result, "Lowest salary" will display as the field name when the result set is
returned.

Example using GROUP BY
In some cases, you will be required to use a GROUP BY clause with the MIN
function.
For example, you could also use the MIN function to return the name of each
department and the minimum salary in the department.
SELECT department, MIN(salary) as "Lowest salary"
FROM employees
GROUP BY department;
Because you have listed one column in your SELECT statement that is not
encapsulated in the MIN function, you must use a GROUP BY clause. The
department field must, therefore, be listed in the GROUP BY section

SQL: MAX Function
The MAX function returns the maximum value of an expression. The syntax for
the MAX function is:
SELECT MAX(expression)
FROM tables
WHERE predicates;

Simple Example
For example, you might wish to know the maximum salary of all employees.
SELECT MAX(salary) as "Highest salary"
FROM employees;
In this example, we've aliased the max(salary) field as "Highest salary". As a
result, "Highest salary" will display as the field name when the result set is
returned.

 22

Example using GROUP BY
In some cases, you will be required to use a GROUP BY clause with the MAX
function. For example, you could also use the MAX function to return the name of
each department and the maximum salary in the department.
SELECT department, MAX(salary) as "Highest salary"
FROM employees
GROUP BY department;
Because you have listed one column in your SELECT statement that is not
encapsulated in the MAX function, you must use a GROUP BY clause. The
department field must, therefore, be listed in the GROUP BY section.

Frequently Asked Questions
Question:
I'm trying to pull some info out of a table. To simplify, let's say the table
(report_history) has 4 columns: user_name, report_job_id, report_name,
report_run_date. Each time a report is run in Oracle, a record is written to this
table noting the above info. What I am trying to do is pull from this table when the
last time each distinct report was run and who ran it last. My initial query:
SELECT report_name, max(report_run_date)
FROM report_history
GROUP BY report_name
runs fine. However, it does not provide the name of the user who ran the report.
Adding user_name to both the select list and to the group by clause returns
multiple lines for each report; the results show the last time each person ran each
report in question. (i.e. User1 ran Report 1 on 01-JUL-03, User2 ran Report1 on
01-AUG-03). I don't want that....I just want to know who ran a particular report
the last time it was run. Any suggestions?

Answer:
This is where things get a bit complicated. The SQL statement below will return
the results that you want:
SELECT rh.user_name, rh.report_name, rh.report_run_date
FROM report_history rh,
 (SELECT max(report_run_date) as maxdate, report_name
 FROM report_history
 GROUP BY report_name) maxresults
WHERE rh.report_name = maxresults.report_name
AND rh.report_run_date= maxresults.maxdate;

 23

Let's take a few moments to explain what we've done. First, we've aliased the
first instance of the report_history table as rh. Second, we've included two
components in our FROM clause. The first is the table called report_history
(aliased as rh). The second is a select statement:
 (SELECT max(report_run_date) as maxdate, report_name
 FROM report_history
 GROUP BY report_name) maxresults
We've aliased the max(report_run_date) as maxdate and we've aliased the
entire result set as maxresults. Now, that we've created this select statement
within our FROM clause, Oracle will let us join these results against our original
report_history table. So we've joined the report_name and report_run_date
fields between the tables called rh and maxresults. This allows us to retrieve the
report_name, max(report_run_date) as well as the user_name.

Question:
I need help in an SQL query. I have a table in Oracle called orders which has the
following fields: order_no, customer, and amount. I need a query that will return
the customer who has ordered the highest total amount.
Answer:
The following SQL should return the customer with the highest total amount in
the orders table.
select query1.* from
 (SELECT customer, Sum(orders.amount) AS total_amt
 FROM orders
 GROUP BY orders.customer) query1,

 (select max(query2.total_amt) as highest_amt
 from (SELECT customer, Sum(orders.amount) AS total_amt
 FROM orders
 GROUP BY orders.customer) query2) query3
where query1.total_amt = query3.highest_amt;
This SQL statement will summarize the total orders for each customer and then
return the customer with the highest total orders. This syntax is optimized for
Oracle and may not work for other database technologies.

Question:
I'm trying to retrieve some info from an Oracle database. I've got a table named
Scoring with two fields - Name and Score. What I want to get is the highest score
from the table and the name of the player.

 24

Answer:
The following SQL should work:
SELECT Name, Score
FROM Scoring
WHERE Score = (select Max(Score) from Scoring);

Question:
I need help in an SQL query. I have a table in Oracle called cust_order which has
the following fields: OrderNo, Customer_id, Order_Date, and Amount. I would
like to find the customer_id, who has Highest order count. I tried with following
query.
SELECT MAX(COUNT(*))
FROM CUST_ORDER
GROUP BY CUSTOMER_ID;
This gives me the max Count, But, I can't get the CUSTOMER_ID. Can you help
me please?

Answer:
The following SQL should return the customer with the highest order count in the
cust_order table.
select query1.* from
 (SELECT Customer_id, Count(*) AS order_count
 FROM cust_order
 GROUP BY cust_order.Customer_id) query1,

 (select max(query2.order_count) as highest_count
 from (SELECT Customer_id, Count(*) AS order_count
 FROM cust_order
 GROUP BY cust_order.Customer_id) query2) query3
where query1.order_count = query3.highest_count;
This SQL statement will summarize the total orders for each customer and then
return the customer with the highest order count. This syntax is optimized for
Oracle and may not work for other database technologies

SQL: LIKE Condition
The LIKE condition allows you to use wildcards in the where clause of an SQL
statement. This allows you to perform pattern matching. The LIKE condition can
be used in any valid SQL statement - select, insert, update, or delete. The
patterns that you can choose from are: % allows you to match any string of any
length (including zero length) _ allows you to match on a single character

 25

Examples using % wildcard
The first example that we'll take a look at involves using % in the where clause of
a select statement. We are going to try to find all of the suppliers whose name
begins with 'Hew'.
SELECT * FROM suppliers
WHERE supplier_name like 'Hew%';
You can also using the wildcard multiple times within the same string. For
example,
SELECT * FROM suppliers
WHERE supplier_name like '%bob%';
In this example, we are looking for all suppliers whose name contains the
characters 'bob'. You could also use the LIKE condition to find suppliers whose
name does not start with 'T'. For example,
SELECT * FROM suppliers
WHERE supplier_name not like 'T%';
By placing the not keyword in front of the LIKE condition, you are able to retrieve
all suppliers whose name does not start with 'T'. Examples using _ wildcard Next,
let's explain how the _ wildcard works. Remember that the _ is looking for only
one character. For example,
SELECT * FROM suppliers
WHERE supplier_name like 'Sm_th';
This SQL statement would return all suppliers whose name is 5 characters long,
where the first two characters is 'Sm' and the last two characters is 'th'. For
example, it could return suppliers whose name is 'Smith', 'Smyth', 'Smath',
'Smeth', etc. Here is another example,
SELECT * FROM suppliers
WHERE account_number like '12317_';
You might find that you are looking for an account number, but you only have 5
of the 6 digits. The example above, would retrieve potentially 10 records back
(where the missing value could equal anything from 0 to 9). For example, it could
return suppliers whose account numbers are:
123170
123171
123172
123173
123174
123175
123176
123177

 26

123178
123179

Examples using Escape Characters Next, in Oracle, let's say you wanted to search
for a % or a _ character in a LIKE condition. You can do this using an Escape
character. Please note that you can define an escape character as a single
character (length of 1) ONLY. For example,
SELECT * FROM suppliers
WHERE supplier_name LIKE '!%' escape '!';
This SQL statement identifies the ! character as an escape character. This
statement will return all suppliers whose name is %. Here is another more
complicated example:
SELECT * FROM suppliers
WHERE supplier_name LIKE 'H%!%' escape '!';
This example returns all suppliers whose name starts with H and ends in %. For
example, it would return a value such as 'Hello%'. You can also use the Escape
character with the _ character. For example,
SELECT * FROM suppliers
WHERE supplier_name LIKE 'H%!_' escape '!';
This example returns all suppliers whose name starts with H and ends in _. For
example, it would return a value such as 'Hello_'.

Frequently Asked Questions
Question:
How do you incorporate the Oracle upper function with the LIKE condition? I'm
trying to query against a free text field for all records containing the word "test".
The problem is that it can be entered in the following ways: TEST, Test, or test.
Answer:
To answer this question, let's take a look at an example. Let's say that we have
a suppliers table with a field called supplier_name that contains the values TEST,
Test, or test. If we wanted to find all records containing the word "test",
regardless of whether it was stored as TEST, Test, or test, we could run either of
the following SQL statements:
select * from suppliers
where upper(supplier_name) like ('TEST%');
or
select * from suppliers
where upper(supplier_name) like upper('test%')

 27

These SQL statements use a combination of the upper function and the LIKE
condition to return all of the records where the supplier_name field contains the
word "test", regardless of whether it was stored as TEST, Test, or test. Practice

Exercise #1:
Based on the employees table populated with the following data, find all records
whose employee_name ends with the letter "h".
CREATE TABLE employees(
 employee_number number(10) not null,
 employee_name varchar2(50) not null,
 salary number(6),
 CONSTRAINT employees_pk PRIMARY KEY (employee_number)
);

INSERT INTO employees (employee_number, employee_name, salary)
VALUES (1001, 'John Smith', 62000);
INSERT INTO employees (employee_number, employee_name, salary)
VALUES (1002, 'Jane Anderson', 57500);
INSERT INTO employees (employee_number, employee_name, salary)
VALUES (1003, 'Brad Everest', 71000);
INSERT INTO employees (employee_number, employee_name, salary)
VALUES (1004, 'Jack Horvath', 42000);

Solution: The following SQL statement would return the records whose
employee_name ends with the letter "h".
SELECT *
FROM employees
WHERE employee_name LIKE '%h';
It would return the following result set:

EMPLOYEE_NUMBER EMPLOYEE_NAME SALARY

1001 John Smith 62000

1004 Jack Horvath 42000

Practice Exercise #2:
Based on the employees table populated with the following data, find all records
whose employee_name contains the letter "s".
CREATE TABLE employees(
 employee_number number(10) not null,
 employee_name varchar2(50) not null,

 28

 salary number(6),
 CONSTRAINT employees_pk PRIMARY KEY (employee_number)
);

INSERT INTO employees (employee_number, employee_name, salary)
VALUES (1001, 'John Smith', 62000);
INSERT INTO employees (employee_number, employee_name, salary)
VALUES (1002, 'Jane Anderson', 57500);
INSERT INTO employees (employee_number, employee_name, salary)
VALUES (1003, 'Brad Everest', 71000);
INSERT INTO employees (employee_number, employee_name, salary)
VALUES (1004, 'Jack Horvath', 42000);

Solution: The following SQL statement would return the records whose
employee_name contains the letter "s".
SELECT *
FROM employees
WHERE employee_name LIKE '%s%';

It would return the following result set:

EMPLOYEE_NUMBER EMPLOYEE_NAME SALARY

1002 Jane Anderson 57500

1003 Brad Everest 71000

Practice Exercise #3:
Based on the suppliers table populated with the following data, find all records
whose supplier_id is 4 digits and starts with "500".
CREATE TABLE suppliers(
 supplier_id varchar2(10) not null,
 supplier_name varchar2(50) not null,
 city varchar2(50),
 CONSTRAINT suppliers_pk PRIMARY KEY (supplier_id)
);

INSERT INTO suppliers (supplier_id, supplier_name, city)
VALUES ('5001', 'Cisco', 'Jersey City');
INSERT INTO suppliers (supplier_id, supplier_name, city)
VALUES ('5007', 'EMC', 'Boston');
INSERT INTO suppliers (supplier_id, supplier_name, city)

 29

VALUES ('5008', 'Microsoft', 'New York');
INSERT INTO suppliers (supplier_id, supplier_name, city)
VALUES ('5009', 'IBM', 'Chicago');
INSERT INTO suppliers (supplier_id, supplier_name, city)
VALUES ('5010', 'Red Hat', 'Detroit');
INSERT INTO suppliers (supplier_id, supplier_name, city)
VALUES ('5011', 'NVIDIA', 'New York');

Solution: The following SQL statement would return the records whose
supplier_id is 4 digits and starts with "500".
select *
FROM suppliers
WHERE supplier_id LIKE '500_';
It would return the following result set:

SUPPLIER_ID SUPPLIER_NAME CITY

5001 Cisco Jersey City

5007 EMC Boston

5008 Microsoft New York

5009 IBM Chicago

SQL: INSERT Statement
The INSERT statement allows you to insert a single record or multiple records
into a table. The syntax for the INSERT statement is:
INSERT INTO table
 (column-1, column-2, ... column-n)
VALUES
 (value-1, value-2, ... value-n);

Example #1 - Simple example
Let's take a look at a very simple example.
INSERT INTO suppliers (supplier_id, supplier_name)
VALUES (24553, 'IBM');
This would result in one record being inserted into the suppliers table. This new
record would have a supplier_id of 24553 and a supplier_name of IBM.

Example #2 - More complex example
You can also perform more complicated inserts using sub-selects. For example:
INSERT INTO suppliers (supplier_id, supplier_name)

 30

SELECT account_no, name
FROM customers
WHERE city = 'Newark';
By placing a "select" in the insert statement, you can perform multiples inserts
quickly. With this type of insert, you may wish to check for the number of rows
being inserted. You can determine the number of rows that will be inserted by
running the following SQL statement before performing the insert.
SELECT count(*)
FROM customers
WHERE city = 'Newark';

Frequently Asked Questions
Question:
I am setting up a database with clients. I know that you use the "insert"
statement to insert information in the database, but how do I make sure that I do
not enter the same client information again?

Answer:
You can make sure that you do not insert duplicate information by using the
EXISTS condition. For example, if you had a table named clients with a primary
key of client_id, you could use the following statement:
INSERT INTO clients (client_id, client_name, client_type)
SELECT supplier_id, supplier_name, 'advertising'
FROM suppliers
WHERE not exists (select * from clients
 where clients.client_id = suppliers.supplier_id);
This statement inserts multiple records with a subselect. If you wanted to insert
a single record, you could use the following statement:
INSERT INTO clients (client_id, client_name, client_type)
SELECT 10345, 'IBM', 'advertising'
FROM dual
WHERE not exists
 (select * from clients
 where clients.client_id = 10345);
The use of the dual table allows you to enter your values in a select statement,
even though the values are not currently stored in a table.

Question:
How can I insert multiple rows of explicit data in one SQL command in Oracle?

 31

Answer:
The following is an example of how you might insert 3 rows into the suppliers
table in Oracle.
INSERT ALL
 INTO suppliers (supplier_id, supplier_name) VALUES (1000, 'IBM')
 INTO suppliers (supplier_id, supplier_name) VALUES (2000, 'Microsoft')
 INTO suppliers (supplier_id, supplier_name) VALUES (3000, 'Google')
SELECT * FROM dual;

SQL Basics
− SQL Stands for Structured Query Language
− Common Language For Variety of Databases
− SQL lets you access and manipulate databases

Types of SQL / Classification of SQL Clauses:
DML - Data Manipulation Language (SELECT)
It is used to retrieve, store, delete, insert and update data in/from the database.
DML Commands:
SELECT- extracts data from the database
INSERT - inserts new data into the database
UPDATE - updates data in the database
DELETE - deletes data from the database

MERGE
CALL
EXPLAIN PLAN
LOCK TABLE

DDL - Data Definition Language (CREATE TABLE)
It is used to create and modify the structure of database objects in the database.
DDL Commands:
CREATE – creates a new database table or index.
ALTER - alters or changes the database table.
DROP - deletes the database table

TRUNCATE
COMMENT
RENAME

DCL - Data Control Language
It is used to create roles, permissions, control access and referential integrity to
the database.
DCL Commands:
GRANT - gives access privileges to users of the database.
REVOKE – withdraws access privileges to users of the database.

TCL - Transactional Control Language
It is used to manage different transactions occurring within a database.
TCL Commands:

 32

COMMIT - Saves the work done so
that the changes or additions are
reflected in future.

SAVE POINT – allows us to break the
sql code in to blocks and then name
that blocks as save point.

ROLLBACK - restores the database
values to original state since the last
commit.

SET TRANSACTION

Pros and Cons of SQL:
Pros: Cons:
Very flexible
Universal (Oracle, Access, Paradox,
Microsoft, etc)
Relatively Few Commands to Learn

Requires Detailed Knowledge of the
Structure of the Database
Can Provide Misleading Results

